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A B S T R A C T

The aim of this article is to investigate a possible way to improve ambient noise

tomography by expanding the data base of useful cross-correlation measurements. We

show that the curvelet transform makes it possible to compute synthetic noise

correlations by simulating directly seismic ambient noise using the spectral element

method. These synthetic correlations can in turn be used to identify surface waves and

overtones even on correlations having a signal to noise ratio much lower than one. We

hope that the possibility to compute SEM synthetic correlations and to extract more

information from correlations will be useful to improve ambient noise tomography and

monitoring.

� 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Les corrélations de bruit ont permis, au cours des dernières années, d’obtenir des images

spectaculaires de la croûte terrestre. Cette méthode reste toutefois limitée par la

distribution inhomogène des sources de bruit, qui rend problématique l’interprétation des

corrélations sur la plupart des trajets inter-station.

Le but de cet article est d’explorer une voie possible pour améliorer les images

tomographiques issues des corrélations de bruit de fond sismique. Nous montrons que,

grâce à la transformée en curvelet, il est possible de calculer des corrélations de bruit

synthétiques en simulant directement des sources de bruit à l’aide de la méthode des

éléments spectraux. Ces corrélations synthétiques permettent à leur tour d’identifier des

ondes de surface ainsi que des modes supérieurs, sur des corrélations de bruit réelles ayant

un rapport signal sur bruit inférieur à 1.

Nous espérons que la possibilité offerte par les simulations numériques de bruit

d’extraire plus d’informations des corrélations de bruit permettra à l’avenir d’améliorer la

résolution des modèles tomographiques.

� 2011 Publié par Elsevier Masson SAS pour l’Académie des sciences.
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1. Introduction

In recent years, the use of seismic ambient noise
correlations pioneered by Shapiro and Campillo (2004)
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have opened up new ways to obtain high resolution images
of the crust (Sabra et al., 2005a; Shapiro et al., 2005). In
particular, in many regions, such images could not be
obtained using conventional methods that use seismic
waves emitted by earthquakes because of insufficient
coverage provided by such data.

The principle of passive imaging is that the correlation
of a random wavefield recorded by distant receivers
contains the complete Green function of the medium
including all propagation modes (Weaver and Lobkis,
2001). This gives the possibility to perform measurements
of the seismic wave travel times between any pair of
receivers. These measurements can then be inverted to
image the Earth’s interior.

This result, as established theoretically (e.g. Colin de
Verdière, 2006; Weaver and Lobkis, 2001), is valid in any
medium but relies on a strong assumption: the wavefield
has to be equipartitioned: all modes of the medium have to
be excited with the same level of energy and with a
random phase (Sánchez-Sesma and Campillo, 2006).
Equipartition is achieved for instance if there are white
noise sources everywhere in the medium (Colin de
Verdière, 2006) or if a few sources are present in a highly
scattering medium. Alternatively this result can be
established by invoking the stationary phase theorem
(Roux et al., 2005b; Sabra et al., 2005b; Snieder, 2004), the
fluctuation-dissipation theorem (Godin, 2007; van Tigge-
len, 2003) or the reciprocity theorem (Wapenaar, 2004;
Wapenaar et al., 2006).

In seismology, the term ‘‘ambient noise’’ refers to all
elastic waves propagating through the Earth that are not
generated by earthquakes or explosions. Indeed, the Earth
undergoes continuous oscillations that are related to the
interaction between the ground, the ocean and the
atmosphere. At periods larger than 1, even averaged over
one year, the distribution of noise sources at the surface of
the Earth is not homogeneous and does not match
completely the requirement of the theory that relates
noise correlations to the Green function of the medium
(see, for instance, Chevrot et al., 2007; Kedar et al., 2008;
Landès et al., 2010; Rhie and Romanowicz, 2004; Stehly
et al., 2006; Stutzmann et al., 2009; Yang and Ritzwoller,
2008)

1.1. Current limitations of ambient noise tomography

The uneven distribution of noise sources, the fact that
one uses a finite amount of data to compute noise
correlations, and the way noise correlations are inverted
implies several limitations on ambient noise tomography:
(i) In
 typical regional tomographic studies such as
Shapiro et al. (2005) or Stehly et al. (2009), less than
one interstation path out of three is used. Other paths
are rejected because either surface waves cannot be
identified unambiguously, or the surface wave travel
times measured on the positive and negative side of
the correlation are not consistent. This is mostly due to
the uneven distribution of noise sources;
(ii) T
he full Green function is not reconstructed: usually
only the surface wave fundamental mode emerges
from the correlations. In particular, body waves have
only been observed in particular situations (Draganov
et al., 2009; Roux et al., 2005a; Zhan et al., 2009) and
are not yet commonly used for tomography;
(iii) T
he velocity of surface waves can be systematically
over or under estimated in certain azimuth since noise
sources are not evenly distributed (Tsai, 2009; Weaver
et al., 2009). This could be erroneously interpreted as
anisotropy of the medium;
(iv) M
ost of the time, surface wave dispersion curves are
inverted using ray theory that is strictly valid only at
infinite frequency and does not account for the
complexity of wave propagation within the 3D Earth.
This is particularly problematic for the crust which can
be extremely heterogeneous.
1.2. A possible way to challenge these limitations

Ideally one could overcome these limitations – at least
partially – by designing an efficient denoising filter to
extract the signal corresponding to the Green function
from the random fluctuations of the correlations, and
taking into account the distribution of noise sources when
inverting noise correlations. ‘‘Denoising’’ noise correla-
tions would make it possible to identify surface waves and
eventually other propagation modes reliably on a larger
number of paths. Computing synthetic correlations by
simulating a realistic distribution of noise sources using
the spectral element method (SEM) (Komatitsch and
Vilotte, 1998) would eliminate most of the biases arising
from the uneven distribution of noise sources during the
forward problem. For this purpose, we will use Spectral
Element Method (SEM) (Komatitsch and Vilotte, 1998)
rather than other methods such as an approach based on
normal mode summation (Cupillard and Capdeville, 2010)
because it will ultimately allow us to perform simulations
in arbitrary 3D structure, without restriction on the
velocity contrasts or wavelengths of heterogeneity.

We will see that these two points are closely related:
the capability to ‘‘denoise’’ noise correlations is essential
for the computation of accurate synthetic correlations
which, in turn, makes it possible to identify surface waves
on correlations based on real data, even when the signal to
noise ratio is low.

These ideas are simple but lead to a practical question:
is it really possible to obtain synthetic correlations in a
reasonable computational time by simulating directly an
ambient noise wavefield ? More precisely, how long a data
record do we need to get a reliable correlation? In real
applications one typically uses records that are up to
several years long. Simulating such long time series to high
frequency (up to 0.2Hz) using the SEM at the global or large
regional scales is out of question because the computation
would take several years on a modern cluster!

To answer this question we implement seismic noise
sources within RegSEM, a regional spectral element code
(Cupillard et al 2011, submitted). In Section 2 we
demonstrate that it is possible to compute synthetic
correlations by simulating a random wavefield but that it
requires several months of data. We show in Section 3 that
using curvelet filters allows a faster and more accurate
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Green function reconstruction. A few days of noise data are
then sufficient to retrieve the full Green function including
overtones. Finally we show in Section 4 that synthetic
correlations can in turn be used to identify surface waves
in a reliable manner on noise correlations even if their
signal to noise ratio is much lower than one.

2. Simulating seismic ambient noise using the spectral
element method

Our aim is to probe the possibility to compute synthetic
noise correlations by introducing noise sources in RegSEM
(Cupillard et al 2011, submitted) a regional spectral element
code.

We start by investigating the easiest case, that is a
homogeneous distribution of random noise sources locat-
ed at the free surface of an attenuating and spherically
symmetric Earth model. Our simulation consists of 37
numerical runs computed in PREM (Dziewonski and
Anderson, 1981) with attenuation and lasting 4 000 s.
We consider a 75x35 degree wide region surrounded by
absorbing boundaries (the so-called PML (Festa and
Vilotte, 2005)), spanning the upper mantle down to
600 km depth. During each numerical run we impose a
random vertical traction that is continuous in time and
space at the surface of the Earth. This generates a random
wavefield that mimic seismic ambient noise.

An array of 40� 5 receivers separated by 60 km records
the vertical displacement (Fig. 1). We retrieve the Green
function between each station pair by taking the time
derivative of the correlation of the background seismic
noise records. For the rest of this article, we will always
compare the time derivative of the correlation with the
Green function of the medium. No processing is performed
on the noise records, such as frequency whitening or one-
bit normalization.

Since we consider a 1D model, the Green function
depends only on the source-receiver distance. This

[(Fig._1)TD$FIG]

Fig. 1. Map showing the stations (yellow triangles) and the grid (black dots) u

Fig. 1. Carte des stations utilisées lors des simulations numériques de bruit.
implies that all correlations computed between station
pairs separated by the same distance converge towards
the same Green function. Therefore we consider that
averaging the correlations over time or over station pairs
is equivalent: correlating T seconds of noise between two
stations yields a similar result as summing N correlations
of T/N seconds computed between N stations pairs
separated by the same distance. Since we performed 37
runs of length 4000 s, each receiver has recorded
37 � 4000 s = 1.7 days of noise. As we have, for instance,
140 pairs of stations separated by 720 km, summing the
corresponding correlations we will obtain a similar result
as if we correlated 37 � 140 � 4000 s = 237 days of noise on
one pair of stations. This is particularly convenient to
study how the correlations converge towards the Green
function.

This is, however, only an approximation that would be
perfectly valid only if the signals recorded by all the
receivers were completely independent of each other. This
assumption is not completely fulfilled in our case, since we
use a regular grid of stations separated by 60 km to study
surface waves whose wavelengths range from 60 to 240 km.

Figure 2 shows a comparison of the Green function
(black line) and the noise correlation (blue dashed line)
computed between stations separated by 720 km in the
20–40 s period band. When using only one day of noise,
surface waves are already visible on the correlation time
series with a correct arrival time. However, the signal to
noise ratio remains low: large fluctuations, that are not a
part of the Green function, are visible in the correlation
time series before and after the surface wave. Without
knowing the Green function, it would be hard to tell if
these fluctuations are meaningless or if they are real
arrivals due to effects of 3D structure such as, for example,
multipathing. When correlating a larger length of noise
record, these fluctuations become less important, and
finally with 200 days of noise the correlation is close to the
Green function.
sed for the numerical simulations.
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Fig. 2. Comparison between the Green function (black) and the correlation (dotted blue) of 1,10 and 200 days of noise computed between two stations

separated by 720 km. All traces are filtered in the 20–40 s period band.

Fig. 2. Comparaison entre fonctions de Green et corrélations de bruit synthétiques.

1 More precisely curvelets are only pseudo localized in physical space

in the sense that they exhibit a rapid decay.
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The bottom line of this section is that: (1) it takes only a
few days to reconstruct accurately the surface wave part of
the Green function (Fig. 2); and (2) several months of data
are required for the random fluctuations of the correlation
to disappear (Fig. 2). This leads to a fundamental point : if
most of the information on the medium is already present
on a correlation averaged over a few days, then it should be
possible to isolate this information from the random
fluctuations of the correlation. This would allow us not
only to measure more accurately the surface wave travel
times, but also to reconstruct the full waveform of the
Green function using a smaller record length. We address
this in the next section.

3. Improving synthetic noise correlations using curvelet
filters

Our goal is to separate the information on the medium
that is present in the correlations from the pseudo-noise
that does not belong to the Green function. Let us see how
this can be done with an example.

Our input signal C is a matrix containing 128 correla-
tions of 1000 s with a sampling rate of 5 s computed
between stations separated by 720 km (Fig. 4a). We do not
see any signal on these correlations since correlating
1000 s of noise is not sufficient to reconstruct the Green
function with an acceptable signal to noise ratio (SNR).
However on the sum of the 128 correlations, the Rayleigh
wave is visible but with low signal to noise ratio (Fig. 4a
lower panel).

In the case where noise sources are homogeneously
distributed we have

C ¼ G þ N; (1)

G being a matrix, each row of which is the Green function of
the medium (the signal we want to extract from the C), and
N a zero-centered pseudo-noise. To denoise C we seek a
basis of functions where most of the signal energy G
resides in a few coefficients. We note that all the rows of G

are identical since they all contain the Green function of
the medium. If one displays G, the Rayleigh wave, for
instance, will appear as a ‘‘vertical’’ or columnar structure.
To take advantage of this, we need to find a basis of
functions that are localized in orientation.

It turns out that the curvelet transform is particularly
well suited for our purpose (Candès et al., 2006). Curvelets
are designed to represent images at different scales and
angles. Like the wavelet transform, it is a multiscale
transform, but it uses a basis of functions that are
simultaneously localised in frequency, in physical space1

and in orientation. Frame elements are indexed by their
level or scale j, angle ul, and x, y position. In physical space,
they look like little plane waves having different orienta-
tions, that oscillate in one direction and are smooth in the
perpendicular direction (Fig. 3b).

In a nutshell, curvelets are obtained by tiling the
frequency plane with trapezoids as shown on Fig. 3a. The
2D inverse Fourier transform of each wedge, i.e of a
function whose absolute value is close to one within the
wedge and vanish outside, defines a curvelet. All wedges
located on the same ring define curvelets having the same
level (scale) and different orientations in the physical
space (Fig. 3b). Furthemore, curvelets can be translated
along the x and y axis in the physical space. Curvelets
provide an optimally sparse representation of objects with
edges and wave propagators (Candès and Demanet, 2004).
For this reason, the curvelet transform is an ideal choice for
detecting wave fronts and suppressing noise in seismic
data (Herrmann et al., 2007) and, as we shall see, in the
noise correlation matrix.
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Fig. 3. a) Curvelets are constructed in the frequency domain by tiling the frequency plane with trapezoids: the inverse fourier transform of each wedge is a

curvelet in the physical space having a particular scale and orientation. Furthemore curvelet can be translated along the x and y axis. All curvelets of the

same scale lie on the same ring in the frequency domain. We show curvelets of level 2,3,4 and 5 respectiveley in red, yellow, green and blue. b) Curvelets

frame elements are indexed by their level (scale) j, angle ul, and position x, y. Here we show two curvelets in physical space of level 5 (left) and one curvelet of

level 4 (right). Each of these curvelets was obtained by taking the inverse fourier transform of the wedge indicated with an arrow.

Fig. 3. Construction des curvelets.
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Since we are going to use curvelets to represent the
matrix C whose each row is a correlation, in our case the x-
axis of the physical space will be the correlation time in
seconds. The correlations have a sampling rate of 5 s, and
most of their energy is between 20 and 100 s of periods. So
in the curvelet domain, most of the energy will be between
level 3 and 5 (Fig. 3a).

Let cj,l(x, y) and gj,l(x, y) be, respectively, the coefficient
matrices of the curvelet transform of C and G (the signal we
want to extract from C) at level j, angle ul, and discrete
position x, y (Fig. 4b). As we mentioned earlier, the rows of
G are identical since they are all the Green function of the
medium. This has two consequences: (1) gj,l(x, y) does not
depend on y; (2) in physical space, we look specifically for a
zero-angle (vertical) signal. So we project C at each level j

and position x, y only on vertical curvelets. We threshold

[(Fig._4)TD$FIG]

Fig. 4. a) Matrix of 128 correlations of 1000 s of noise computed between two sta

stations (black), the sum of the 128 correlations (dashed blue line, surface waves

any signal). We show only the positive time of the correlations. b) Coefficients of

has been denoised using curvelets.

Fig. 4. Comparaison d’une matrice de corrélations de bruit synthétiques brute
the coefficient, that is we keep only the highest coefficients
of cj,l(x, y), and bring the data back in the physical space.

The result is shown on the Fig. 4c. On each row of the
matrix, i.e on each correlation, Rayleigh waves are now
clearly visible around 200s. The sum of all correlations (Fig.
4c lower panel) has also been improved and has a similar
waveform as the Green function (black line). This example
illustrates how it is possible to successfully extract the
Green function from a correlation having a moderate signal
to noise ratio. Let us quantify more precisely what are the
benefits of the curvelet filter.

3.1. Comparing raw and denoised correlations

In Fig. 5 we compare Green functions (solid line) with
raw and denoised correlations (dashed line) computed
tions separated by 720 km. Lower panel: Green function between the two

are visible with a low SNR), and the correlation #60 (red line, we do not see

the curvelet transform cj=3(x, y). c) same as a) after the correlation matrix

et débruitée.
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Fig. 5. a) Correlation of 1.5 days of noise between stations separated by 320, 720 and 1440 km (dashed line) vs the Green function between the same

stations (solid line). b) same as a) but the correlations were denoised using curvelets. c, d) same as a,b) except that 11 days of noise are used to compute the

correlations. For each comparison, we show the misfit of the correlation and Green function waveforms measured in the shaded area, and the surface wave

travel time difference dt.

Fig. 5. Exemples de corrélations de bruit, brutes et débruités.
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using 1.5 and 11 days of noise between stations separated
by 360, 720 and 1440 km. For each comparison, we
indicate the travel time difference dt of surface waves
measured on the Green function and on the correlation at
periods between 25 and 60 s, as well as the waveform
misfit defined as

misfit ¼ 1

t2� t1

Xt¼t2

t¼t1

½GðtÞ � CðtÞ�2; (2)

G being the Green function and C the correlation. The misfit
is evaluated between time t1 and t2 corresponding to the
first and last oscillations of the Green function (shaded
area on Fig. 5).

It is clear on all examples shown that curvelet filters
successfully isolate the signal from the random fluctua-
tions of the correlations. For instance, at 1440 km, we see
higher modes on the Green function around 250 s that
are absolutely not visible on raw correlations (Fig. 5c).
However, these higher modes appear more clearly on
denoised correlations especially when using 11 days of
noise (Fig. 5d). This illustrates that curvelet filters make
it possible to retrieve the Green function’s waveform
more accurately, and to identify other arrivals than
the surface wave fundamental mode. Hence the wave-
form misfits are much lower on denoised correlations
than on raw correlations. The improvement can be up
to one order of magnitude (at 360 km with 1.5 days of
noise for instance, Fig. 5b). On the other hand, denoising
correlations do not improve significantly Rayleigh
wave travel time measurements. This is consistent with
what we have seen in Section 2: travel time measure-
ments of the Rayleigh wave are already reliable when
correlating a few days of noise, and cannot really be
improved.

We have seen that thanks to the curvelet filter,
simulating 1.5 days of noise is sufficient to retrieve
accurately the waveform of the surface wave part of the
Green function with a high signal to noise ratio. Higher
modes can be obtained using 11 days of noise. It is
therefore practically possible to compute accurate syn-
thetic correlations by simulating directly ambient noise
sources using the spectral element method – at least in a
1D Earth model.
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Fig. 6. a) Top panel: 256 correlations of 1000s of noise computed between two stations separated by 720 km. Lower panel: the sum of all correlations. b)

Same as a) but we added to each individual correlation white noise whose amplitude is 6 times greater than that of the data. The signal to noise ratio of the

sum of all correlations is much lower than 1 s. Surface waves are no longer visible on the sum of all correlations (lower panel). c) Matrix of reference

correlation that is used to construct the curvelet filter. d) We use the reference correlation shown in c) to construct a curvelet filter that allows us to denoise

the correlations shown in b). The denoised correlation is shown in blue and is compared to the Green function in red.

Fig. 6. Utilisation d’un signal de référence pour débruiter une matrice de corrélations dont le rapport signal sur bruit est inférieur à 1.
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4. Using curvelets to denoise correlations having an
SNR �1 using a ‘‘reference correlation’’

We have seen in the previous section that curvelet
filters make it possible to compute accurate synthetic
correlations by simulating less than three days of seismic
noise which requires less than one month of computation
time on a small cluster (at periods greater than 20 s). We
want now to show that one can use the curvelet transform
in a different way to extract the Green function of the
medium from a matrix of noise correlations C whose signal
to noise ratio is much lower than one. This method is more
efficient than the one presented in the Section 3, but it
assumes that one has a ‘‘reference correlation’’ that is close
enough to the actual Green function of the medium. When
addressing a tomographic problem, the ‘‘reference corre-
lation’’ could be a synthetic correlation computed in an
initial Earth model as shown in the previous section that is
used to denoise correlations of real data.

We start with a matrix C of 256 synthetic correlations of
1000 s of noise computed in PREM and recorded by two
stations separated by 720 km to which we add some white
noise filtered between 20 and 80 s, whose amplitude is 6
times larger than that of the data (Fig. 6a and b). The signal
to noise ratio of the correlations is much lower than one.
No signal is visible even on the sum of all the 256
correlations (Fig. 6b lower panel). Is it possible to extract
any signal from these data?

We proceed in two steps. Firstly, we demonstrate that it
is possible to isolate the signal of C from the noise in the
curvelet domain if one already knows the green function of
the medium. Secondly, we show that this result still holds if
instead of the exact green function one use a ‘‘reference
correlation’’ that is significantly different from the Green
function.

4.1. Using the Green function of the medium to extract the

signal from the noise of C in the curvelet domain

To extract the signal from C, we construct a matrix G
having the same size than C, whose each row is the green
function of the medium (Fig. 6c). We then multiply the
coefficients of the curvelet transform of C by those of G

rescaled between 0 and 1, and bring the data back into the
physical space. This is a simple way to window the signal of C

in the curvelet domain. The result is shown on the Fig. 6d.
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Fig. 7. We compare the sum of the denoised correlations matrix (Fig. 6b) in dotted blue and the Green function of the medium (black), when different

reference correlations (red) are used to construct the curvelet denoising filter. As long as the travel time of the surface waves of the reference correlation

differs by less than half a period (dt = 25 s) from the GF, it can be used to construct a curvelet filter that can be applied to a noisy correlation to extract the

Green function of the medium.

Fig. 7. Influence du choix du signal de référence.
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We now see clearly surface waves with an arrival time of
about 200 s on the correlation matrix. The sum of all
correlations shown on the lower panel has a waveform that
is close to the exact Green function of the medium. In
particular, the surface waves of the Green function and the
denoised correlations have the same arrival time, whereas
they could not even be identified on the original correlation.

Of course, in practice, it is perfectly useless to use the
Green function to extract . . . the Green function from C!
But this shows that in the curvelet domain, the signal of C

can be isolated from the noise. These properties is related
to the fact that the curvelet transform provides an
optimally sparse representation of the solution of the
wave equation in smooth mediums.

4.2. Extending this method by using a ‘‘reference correlation’’

rather than the Green function of the medium

Now let us see what happens if one uses a ‘‘reference
correlation’’ instead of the Green function of the medium to
extract the signal from C. In our case the reference
correlation is assumed to be simply the exact Green function
of the medium shifted by either 0, 10, 25 or 50 s as shown on
Fig. 7. For each of these reference correlations, we attempt to
extract the Green function from C using the procedure
presented in the previous section. The result is presented on
the Fig. 7. We see that as long as the reference correlation is
shifted by less than 25 s with respect to the Green function
(that is the half of the dominant period of the signal), the
signal extracted from C (dotted blue) is close to the green
function of the medium. In particular the arrival time of the
fundamental mode of the surface waves are identical.
However, when the ‘‘reference correlation’’ differs strongly
from the Green function, it is no longer possible to use it to
denoise C (see Fig. 7 for dt = 50 s): the denoised correlation
differs strongly from the green function, and it becomes
difficult to measure the arrival time of the surface wave.
4.3. Conclusion

The bottom line is that as long as the travel time of the
surface waves of the reference correlation differs by less
than half a period (dt = 25 s) from the Green function, it can
be used to construct a curvelet filter that can be applied to a
matrix of correlations having a signal to noise ratio lower
than one, to extract the Green function of the medium from
them. This is particularly interesting, as in typical
tomographic studies at the continental scale, more than
two thirds of the correlations are discarded, since it is not
possible to make reliable travel time measurements. We
hope that this method will be useful to include more
measurements and eventually identify other arrivals than
surface waves, and thus provide additional constraints on
tomographic models.

However there is no magic! First, this method works
only provided that the surface wave travel time on the
reference correlation and the Green function do not differ
by more than half a period. Second, a correlation can be
‘‘denoised’’ only if it contains deterministic information
about the medium. This is ensured in our synthetic tests by
the homogeneous distribution of noise sources at the free
surface. Applying this to real data may be harder since real
noise sources are not evenly distributed. One may have to
use synthetic correlations computed with a realistic
distribution of noise sources to denoise real correlations.
This means that noise sources may have to be located
accurately first. This may be a challenge!

5. Discussion and conclusion

The aim of this article was to investigate a possible way to
improve ambient noise tomography. We used the spectral
element method to simulate a homogeneous distribution of
noise sources at the free surface of a layered Earth (PREM).
We have shown that several months of data are required for
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the correlations to converge towards the Green function of
the medium (Fig. 2). On the other hand, hopefully there are
already deterministic informations on the medium on a
correlation averaged only over a few days (Fig. 2). By using a
curvelet filter, without any a priori, it is possible to extract
this information from the random fluctuations of the
correlation. With this method, simulating less than two
days of data is enough to retrieve surface waves accurately
from noise correlations, and using about 10 days of data one
can also distinguish higher modes (Fig. 5).

This shows that it is possible to use the spectral element
method to compute synthetic correlations and Green
functions by simulating ambient noise. The next step will
be to simulate a realistic distribution of noise sources in an
3D Earth model, the aim being to compare synthetic and
real correlations. We hope that improving the forward
problem in this way will be useful to obtain better images
of the Earth’s interior from seismic noise.

However, the most interesting point is that synthetic
correlations can be used in turn to extract the information of
noise correlations having a signal to noise ratio much lower
than one (Fig. 6). We hope that this will help us to include
more paths in tomographic studies, to identify other arrivals
than the direct surface waves on the correlations and to
increase the accuracy in the monitoring of temporal changes
in the medium. In the present work, we have only
investigated this possibility using synthetic data. Further
work will be required to study to what extent curvelets may
be useful when using real data. This may be a challenge
considering that the distribution of noise sources is not
homogeneous as in our synthetic experiment.
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