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Summary. We present a variety of examples, showing systematic fluctuations 
as a function of angular order of measured eigenfrequencies for given normal 
modes of the Earth. The data are single station measurements from the 
CEOSCOPE network. Such fluctuations are attributed to departures from the 
lowest order asymptotic expression of the geometrical optics approximation. 
We derive first-order asymptotic expressions for the location parameter for 
all three components of the Earth's motion, by a method based on the 
stationary phase approximation and geometric relations on the unit sphere. 

We illustrate the sensitivity of the fluctuations to the different parameters 
involved (source parameters, epicentral distance, laterally heterogeneous 
earth model) with synthetic examples corresponding to CEOSCOPE 
observations. Finally, we show the results of first attempts at inversion, 
which indicate that, when the fluctuations are taken into account, more 
accurate estimates of the great circle average eigenfrequencies can be 
obtained, and additional constraints put on the structure in the neighbour- 
hood of the great circle. 
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1 Introduction 

When interpreting measurements of the frequencies of free oscillations of the Earth, it is 
generally assumed that the geometrical optics approximation is valid in its lowest order 
expression. This implies that the centre frequency i l ~  (0 of mode K ,  corresponding to large 
angular orders I ,  is related to the average, over the great circle y containing the source and 
the station, of the local frequency 6w, (Jordan 1978; Dahlen 1979): 

where a,,. is the corresponding eigenfrequency calculated for a reference spherically- 
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symmetric model. Following Jordan (1978), AK is also called the ‘location parameter’. AK 
thus depends only on the average structure underlying the great circle path and is 
independent of the relative location on y of the source and receiver, of the structure outside 
y and of the parameters of the seismic source. In particular, the predicted variations of 
eigenfrequency with angular order Z are smooth. 

In what follows, we shall define the apparent centre frequency C2 of mode K as the peak 
frequency of the power spectrum corresponding to a given angular order 1. Although much 
debate has been devoted to defining the centre frequency correctly, Silver & Jordan (198 1) 
have shown that, for frequencies higher than 1 mHz, all the definitions are equivalent. 

In practice it is often observed that, for a given mode-branch, the variations of measured 
eigenfrequencies with angular order are very rugged and the fluctuations appear to have 
some sort of periodicity. 

This has been systematically observed on very long period data from stations run by IPG 
in Paris (Jobert & Roult 1976) and has led these authors t o  design a smoothing procedure to 
eliminate such fluctuations in the measurement of great circle phase velocities based on free 
oscillation data. More recently, such observations have also been made on data from the 
GEOSCOPE network (Roult & Romanowicz 1984; Roult, Romanowicz & Jobert 1986). 

Systematic fluctuations of order 2 were also reported by Silver & Jordan (1981) for three 
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Figure I .  I,,xaniples of fundamental mode eigenfrequency measurements on  vertical records from the 
GI:OSCOI’I< network, showing systcniatic fluctuations as  a function of angular ordcr, with periodicity 
depending o n  thc cpicentral distance. The data arc expressed as relative differences with respect to  thc 
PREM model and variable filtering has been applied to  the rccords t o  isolate the fundarncntal spheroidal 
modc. The smooth part of the observations has been removed by high pass filtering. 
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Kermadec events of 1976 with similar focal mechanisms. These authors pointed out that 
such effects could contribute significantly to the large unexplained part of the variance in 
global eigenfrequency data, and first suggested that they could be due to departures from 
the geometrical optics approximation as commonly applied. In order t o  explain these 
observations, Dahlen (1982, unpublished) proposed a first-order asymptotic expression for 
the location parameter, in the case of an isotropic source, which led him to introduce a term 
in (1/Z) proportional to 

where A is the epicentral distance and k = 1 + 112. The derivation of this expression, in the 
case of an isotropic source, has since been reported in Davis & Henson (1986). 
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Figure 2. Example of order 2 fluctuations of measured eigenfrequencies as a function of angular order for 
the fundamental mode, extracted by variable filtering from the three component records of the Costa 
Rica event of 1983 April 3, observed at GEOSCOPE station SSB (A = 82.45"). (a) vertical; (b) longitudi- 
nal; (c) transverse. The notations are as in Fig. 1. 
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Most reported observations of such fluctuations have, so far, been on vertical records and 
for distances close to 90", for which the periodicity in 1 is 2 ,  and for the fundamental mode. 
The greater variety of observations now available from the GEOSCOPE network 
(Romanowicz et al. 1984) strongly confirm Dahlen's conjecture. As shown in a series of 
examples on Fig. 1 ,  they are clearly observed for different epicentral distances, with the 
periodicity as predicted by Dahlen's 
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term (4 for A close to 45' or 135", 8 for A close to 21". . .). Epicentral data for the events 
considered can be found in Roult et al. (1986). We also see the fluctuations on all three 
components: Fig. 2 gives such an example for the Costa Rica event of 1983 April 3, observed 
at the GEOSCOPE station SSB in France. In some cases, after variable filtering has been 
applied to isolate a given mode (Roult & Romanowicz 1984), they are also visible on overtone 
spectra. Fig. 3 gives an example for the same event observed on the vertical component at 
SSB. Here, the second spheroidal overtone has been extracted and order two fluctuations 
are clearly visible. 

It thus appears that some systematic account of these observations needs to be taken, and 
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Figure 3. Example of order 2 fluctuations observed on  eigenfrequencies corresponding to the sccond 
spheroidal overtone, extracted by  variable filtering from the vertical component record of the  Costa Rica 
event of 1983 April 3 ,  observed at  SSB (A = 82.45'). The notations are as  in Fig. 1. 

higher order asymptotics is a promising approach. In what follows, we first present an 
alternative derivation of the first-order asymptotic expressions for the location parameter, 
for each of the three components of the ground motion and for the case of a general 
moment tensor source. Our independent derivation differs from that of Dahlen in that it is 
based on geometrical relations on the sphere and on the physically tangible stationary phase 
approximation. 

In the second part of this paper, we present the results of experiments designed to test 
the sensitivity of the observed eigenfrequency, as a function of angular order I ,  to the 
different parameters involved: source mechanism and depth, epicentral distance and earth 
model. We show how the introduction of first-order asymptotics can be used to improve the 
quality of the measurement and interpretation of great circle averages, and to  put better 
constraints on the large-scale global models of the Earth's structure. 
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2 First-order asymptotics for the location parameter 

Following Jordan (1978) and Dahlen (1979), the location parameter AK can be exprcssed 
as : 

m 

where { H E r n  e }  is the splitting matrix corresponding to mode K (Woodhouse & Dahlen 
1978), (Q,, @,) and (O,., @,.) are respectively the coordinates of the epicentre and of the 
receiver. S: and R E  # are source and receiver functions respectively, and can be written in 
condensed form, using an operator formalism 

R : ( O r ,  @J = v * D YT" (Or ,  G,.) 

where D is the displacement operator, v the instrument operator (instrument response and 
component), and Y;" are fully normalized spherical harmonics (Edmonds 1960). Also: 

where M is the moment tensor describing the source and E is the strain operator. 

three local functionals 6wj( i= 1 , 3 )  of the Earth's structure: 
Woodhouse & Girnius (1982) have shown that expression (2) can be written in terms of 

2 n n  

Here 6m and h represent the perturbations to a reference spherical earth model and M z ) ,  
H i )  are given in Woodhouse & Girnius (1982) in terms of eigenfunctions of the reference 
model. In expression ( 3 ) ,  the surface integral is taken over the unit sphere and the kernels 
Ki are: 

c s,K(e,,@,)(-vT)"y;l(e,@> YY'@,@)l R t%@, . )  
m m  

m 

where V1 is the gradient operator on the unit sphere. We note here that 6w0 is the local 
frequency as defined in Jordan (1978). Using the operator formalism introduced above, 
since the operators do not depend on rn and rn', the kernels K i  become: 
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where we have defined the two operators: 

Oph = (M : E )  (-V:)i(v * D) 
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Op, = (M: e )  (v * D) (6)  

and we keep in mind that M : E  acts on the source coordinates (Os, A), v - D on the receiver 
coordinates ( O r ,  &) and the operator (- V :)i on the running coordinates on the sphere 
(O,@). The addition theorem for spherical harmonics gives (Edmonds 1960): 

c V * ( O S ,  @J y p r ,  $r) =f yp (A), 
m 

where A is the epicentral distance andf i s  the normalizing factor: 

f =  E , w i t h k = l + - ,  1 

2 

where X and 0 are angular distances SQ and RQ on the sphere, and Q is any point on the 
surface of the sphere, as defined in Fig. 4. Applying (7) and (8), we can now write: 

i= 2 

A K =  c 4, 
i = O  

S 

Figure 4. Epicentral coordinate system (A, LI) used in the derivation of the firstader asymptotics. The 
great circle y containing the source (S) and the receiver ( R )  defines the meridian of zero longitude. Q is 
any point on the sphere and A R ,  j i ~  are unit vectors for the spherical coordinate system attached to point 
R. 
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where : 

In what follows, we shall derive an order (1/1) asymptotic approximation to the location 
parameter, valid for any moment tensor source. We shall make use of the first-order 
asymptotic approximation to the fully normalized Legendre function X;" (Robin 1958): 

cos k x - - + m L +  71 X ; " ( X )  = p (f-L) cot,] + O  (i), 
7 r G  [ 4 2 2 k 8 k  

where X;" is related to  Y y  by: 

Y;(e,$)=x;"(e)exp ( im4).  

From here on, we shall work in an epicentral coordinate system (A, p),  with the epicentre S 
at the pole, and the great circle y as the meridian of longitude zero (Fig. 4). We shall first 
consider the case of an isotropic source, already studied by Dahlen (1982, unpublished) and 
reported in Davis & Henson (1986). We shall be using a different approach, using a method 
based on the stationary phase approximation, and then extend the calculations to the case 
of a general moment tensor source observed on all three components. 

In all cases considered, we can show by the method proposed below, that both J ,  and J 2  

are of order (1 /Z2), so that we shall only be concerned with the calculation o f J i  (equation 9). 

2 Case of an isotropic source observed on the vertical component 

and we clearly see from (1 1) and Fig. 4 how the contribution of each scattering point Q on 
the sphere contributes. Let us first set: 

2 n  

/ ( A )  = s, S w w , c l )  yp(wC1. 

Using the asymptotic expression (lo), we can write: 

with: 

S o t :  ( A ,  P )  

rrdsin P ' 
g(A, P) = 

The contribution I0 to I @ )  (to order I/[) from the neighhourhood of the stationary point 
I.( = 0 can readily be obtained, using the results of Appendix A, and noting that, with the 
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notations of  that appendix: 
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a 0  
go = with wo = 6 w t  (A, O j  

n d s i n  po 

where: 

a2 p 
aP2 

&,=p(X,O) and O’;=- (X,O). 

Then, t o  order 111: 

It can be shown. by  the same procedures, that the contribution I ,  from the stationary point 
p = 71 t o  [(A) is such that: 

Yp (A)J, = Jon [ Io (A)  + [,(A>] Yp (A) sin XdX = joz * lo (A) Yf (A) sin XdX, (14) 

where Yp(A) is replaced b y  its asymptotic expression (10). 
Relation (14) corresponds to  the fact that  the contributions from p = 0 and p = 71 add u p  

to span the entire great circle y (Fig. 4). This will be true in all cases studied in this paper, 
so that, in what follows, we shall only be concerned with calculating contributions I. from 
the stationary point p = 0. 

Using (lo), (13) and (14), we then obtain, t o  order 1/Z: 

yp@, J ,  = - [ sl0 cos (kA - i) + 2 sin ( k A  - a) 
n- 

+-cotAsin(kA-:)]+ Qo 0 ( h ) ,  
8k 

where we have defined: 
1 f 2 ,  

(A, 0) (cot A - cot  A) dX. 
271 

Since we can show by the same method, that the integr;.; J 1  and Y L  are of order 1 / 1 2 ,  we 
then have: 

Using the asymptotic expression (10) for Y :(A), the terms in cot  A in (1 5) and (10) cancel 
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out and we finally obtain: 

As shown in Appendix B, this expression is equivalent to that of Dahlen in Davis & Henson 
(1986). 

We note that, by using the classical stationary phase approximation to order zero and the 
corresponding asymptotic expression for Xi”, we would have obtained again, in a straight- 
forward manner using relations on the sphere, the zeroth-order geometrical optics approxi- 
mation Ak Cl0 derived by Jordan (1978) and Dahlen (1979) using different approaches. 

3 Case of a source represented by a moment tensor (Mij) 

3.1 V E R T I C A L  C O M P O N E N T  ( S P H E R O I D A L  M O D E S )  

In this case : 

v .  D yp(@ =y1@) Y F ( a  = YF(P)> (18) 

where a is the Earth’s radius and y1 is the displacement eigenfunction, in the notation of 
Alterman, Jarosch & Pekeris (1959) and Saito (1967), normalized to 1 at the surface, and: 

M : E Yp(A) = aoXp(A) + a l  (a) X j  (A) + a2 (a) Xf (A) (19) 

where, following the notations of Kanamori & Cipar (1974) and introducing the moment 
tensor { M i i }  (Aki & Richards (1980): 

tiz1 (CP) = K~ JI(I+1) ( + M , , ~  cos CP +M,.@ sin a) 
f a z ( @ )  = K,1(1+ 1) [(Moo - M @ @ )  cos 2@ + 2Ms@ sin 2@] /2, 

,north 

Figure 5. Definition of the azimuth angles Q, and @R, measured from the strike of the fault. 
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where (a = ( a ~  + p and the angle @ R  , measured from the strike of the fault, is defined in Fig. 
5. K O ,  K 1  and K 2  are linear combinations of eigenfunctions as defined in Kanamori & Cipar 
(1 974) and calculated at the depth of the source. 

In the first of equations (20), we have assumed that the trace of the moment tensor is 
zero, an assumption not critical to the validity of the present calculations. 

We can rearrange a1  ((a) and a z ( @ ) ,  so that: 

B. Romanowicz and G. Roult 

a l ( @ ) = A l  c o s p + B 1  s i n 1  

a2 ((a) = A ,  cos 2p + B2 sin 2p 

with: 

A 1 = 0 1  ( @ R )  

A2 = 0 2 ( @ R )  

This yields: 

Op,[YP(A)]J, =ao& + A I S l  + A2S2  + B I T l  + B 2 T 2 ,  

T I  =Jjtiwt(X, p) x; (1) xp(p> sin p ds 

T2 = Sw,f(X, p)  Xf (X) X p  (p) sin 2p ds. (24) SJ 
Each of the integrals (24) can be evaluated using the stationary phase approximation to 
orderl/l of Appendix A and the asymptotic expressions (10). We obtain in this manner: 
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where we have defined: 

R1 (A) = nv/sinA sin 

and introduced: 

2rl 

(kA -%) 

(A, 0) (cot A - cot A) dX. 

For the demoninator, we have: 

Op, [Yp (A)] = a o X p  (A) + A ,  X: (A) + A z X :  (A). 

Replacing here also the Legendre functions by their asymptotic expressions (1 0), the terms 
in cot A of (25) and (28) cancel out and we finally obtain: 

where: 

T = t a n  (kA-;) 

A ,  
a0 - A 2  

f=- 

Equation (29) can also be written: 

AkZf2,,  + (2 +x;) tan ( k A -  
4) n + y T  f 2 I  

4 

and tan z = t ,  

Appendix B. We note here that y/Z is of order 1 / 1 2 .  
Again, this result is equivalent to that reported in Davis & Henson (1986), as shown in 

3.2 H O R I Z O N T A L  C O M P O N E N T S  

To order ( I / / ) ,  we expect some contribution of spheroidal motion to the transverse 
component and toroidal motion to  the longitudinal component. 
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Indeed, for spheroidal modes, the contribution to t h e  longitudinal component comes 
from the term: 

where u is defined in Fig. 4 and ,  in the spherical triangle SRQ, we have the relation: 

sin u sin p 

sin X sin 0 
y3 is the displacement eigenfunction in the notation of Saito (1  967). 

- __ - _- 

In the same manner, the  contribution to the transverse component comes from: 

(33) 

(34) 
a yp 
a0 

v D[Yp@)] = i R y 3 ( a )  V, (Yy[P)]  = y 3 ( a ) -  (0) sin (71 - u). 

Similar relations can be obtained for toroidal modes. 

3.2. I Spheroidal modes: contribution to the longitudinal component 

Just as in the case of the vertical component, we have here: 

M : e [  Yy(A)] = a" X y ( A )  + a ,  (a) X; (A) + a 2 ( @ )  X:(A) .  

Again, we can write: 

O p l , [ Y P ( A ) ] J , = a , , S , : ' + A I S : ' +  A , S : ' + B , T f + B , T ;  

with, now using (32): 

etc. 
These integrals can be readily evaluated by the same method as used previously, using, in 

addition, the following asymptotic approximation, valid to order (1  / I )  and obtained from 
(10) using the recurrence relation (B5) of  Appendix B: 

We thus obtain: 

+ Q2 co tA  [ - q , Q 1  (L-L) 2k 8k + ( L - L ) R , A l  k 8k 

+ (i-1) Q l A 2 ]  +-(B,Rl 0 ,  + 2B2Ql) .  
2k 8k k 

(39) 
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For the  denominator, we now have: 

22 1 

(40) 

where x, y ,  z are as defined in (3 1). 

I ,  as compared t o  the vertical component, the amplitudes remaining equal. 
We note that there is a 7r/2 shift in the phase of the fluctuations of AK with angular order 

3.2.2 Sphc)roidal modes: coiitrihutioti to the traiisversc comporieiit 

Using (34), (35), (40) and the order (1 / I )  stationary phase approximation, we obtain: 

with: 

- 1  
(ao - A 2 ) A ,  

(a" - A2)2  + A :  
a!= 

-~ B I A I  + 2B2(a, - A , )  

(ao  - A 2 ) ,  + A :  P =  

and we have defined : 

271 
(A ,  0) dX. 

(43) 

(44 ) 

3.3.3 Toroidul modes: coritribiitiot~ to thc trarisvcrse c'onipotimit 

In what follows, we shall call K a given totoidal mode, not to be confused with the 
spheroidal mode previously considered. In this case: 

M: E Yy(h )  = (a) 4' ( A )  + ( '2(@) X,Z(A) (45) 

with, using the notation of  Kanamori & Cipar (1974): 

c I  (a) = - L , yr, = - L jiM,@ cos - Mrf,  sin a) = C ,  cos p t D I sin p 

= C2 cos 2p + D, sin Zp, (46) 
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where L1 and L2 are eigenfunctions calculated at the depth of the source and 
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c1 = c l ( @ R )  

CZ = CZ (@R 

D 1  = a,&', = L (Mro sin @ R  + M,.e cos @ R )  

In this case : 

and: 

ax; ax; OPD [Yy(A)] = C1 - + Cz - 
aA an 

This yields, using (10) and (38) and the stationary phase approximation of Appendix A: 

(49) 

where Qo is the great circle average of the local frequency corresponding to toroidal mode 
K ,  and: 

tan zT =- 
D ,  
CI 

3.2.4 Toroidal modes: contribution to the longitudinal component 

Following the same procedure, we obtain: 

1 

k sin A 
= ___ (crTQ2,  + p T 0 , )  tan 

with zT defined in (5 1) and: 

c: + 2 c ;  
crT = _____ 

c: + c; 

From equation (52) ,  we see that there is an order (l/o contribution oftoroidalmodes to the 
longitudinal component. We therefore do not expect to obtain identical results on the 
vertical and longitudinal component when measuring spheroidal mode eigenfrequencies, 
unless we can eliminate the higher order effects. 
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4 Synthetic experiments 

We have just seen that the horizontal components contain to order Ill,  contributions from 
both spheroidal and toroidal modes whereas the vertical component only has contributions 
from spheroidal motion, expressed rather simply in equation (30). In what follows, we shall 
only consider the simplest case of the vertical component. We shall also assume that we have 
been able, for instance by variable filtering, to isolate a given mode K .  The examples will be 
given for the case of the fundamental spheroidal mode. We will focus our attention on 
angular orders greater than 20, not only because the asymptotics are valid at large angular 
orders, but also because, in the 1 = 10-20 range, effects of coupling with the rotation of the 
Earth are likely to disturb the pattern of fluctuations (Masters, Park & Gilbert 1983). 

The first-order asymptotics give the following expression for the location parameter 
corresponding to spheroidal mode K and measured on the vertical component: 

AK = A ( I ) +  7 tan kA --+ z 
B(l) ( : 1 (54) 

with: 

a2 

2 
B(1) =- + X 

and x, z depend on the source parameters and have been defined in (3 1). 
The fluctuations of the eigenfrequency as a function of angular order 1 have a periodicity 

which is governed by the epicentral distance A, which enters the argument of the term in 
tangent. Such a periodicity is clearly observed, as we have seen in Fig. 1. Two other para- 
meters are essential to the actual appearance of the data: the zero crossings and sense of the 
fluctuations (up or down after zero crossing) in other words, their phase, governed by the 
value z ,  that is, by the source parameters (equations 3 0 , 3  l), and by the epicentral distance. 
The other parameter is the amplitude of the fluctuations, which depends on the factor B(I) 
in front of the tangent, that is on the structure in the neighbourhood of the great circle. 

In what follows, we shall consider some experiments designed to gain insight into the 
sensitivity of the observations to each of the parameters involved. 

4.1 M E A S U R E M E N T  E R R O R S  

We first would like to give some indication of the significance of the signal level in the 
fluctuations which we obsewe. The real observational error is difficult t o  estimate in such a 
study, since we are not able to  repeat measurements for different earthquakes with the same 
source-station geometry. Following Dahlen (1976), we have estimated the error due to noise 
in the data, by calculating the spectrum of the noise in the time period preceding the earth- 
quakes considered. In the frequency range of interest (I = 20-70), our calculations show 
that the noise contribution to the relative deviation in eigenperiod is no greater than 
1 x 

For the particular problem studied here, this procedure is however not totally satisfying, 
since, in our measurements, we are including small peaks, whose shape rarely resembles that 
of a perfect resonance function. In particular, we expect some systematic errors to occur, 
not related to the lateral heterogeneity, but having the same fluctuating behaviour as a 
function of angular order, and which could be due to mode overlap (Xu Guoming, Knopoff 

typically of the order of 0.5 x 
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& Ziirn 1983). To investigate this further, we have calculated synthetic seismograms for 
fundamental mode Rayleigh waves in a spherically symmetric earth model (PREM) for 
different source-station geometries and source mechanisms, corresponding to the data 
analysed in this paper. Then the synthetic seismograms were put through the same 
processing as we do for the real data. This includes tapering of the time series with a Connes 
window function w ( x ) =  16x2(1 - x ) ~  and time variable fdtering (Roult & Romanowicz 
1984). We used different lengths of time series (12, 24, 36 hr) and measured eigen- 
frequencies with the same method as for real data (peak frequencies). The resulting relative 
departures of eigenperiods with respect to the PREM model are shown in Fig. 6 for the 
Costa Rica event of 1983 April 3 ,  observed at SSB (A = 82.2"), and in Fig. 7 for the same 
event observed at PAF (A = 133.8"). In these figures, calculations were made without 
including noise in the data. It is clear that systematic fluctuations are present, and have the 
same periodicity as in the real data, but when the length of record is increased, their 
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Figure 6. Synthetic calculations of relative eigenperiod shifts with respect to PREM for a noise-free 
seismogram corresponding to the case of the Costa Rica event of 1983 March 4 observed at  station SSB, 
for three different lengths of record, starting a t  the origin time: (a) 12 hr, (b) 24 hr, (c) 36 hr (A = 82"). 
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amplitude decreases considerably. For a typical record length of 24 hr, as used in this paper, 
and except for the smallest peaks ( 1 =  34 and 45 in Fig. 6, 1 = 18, 49, 57 in Fig. 7), the 
systematic relative error is found not to exceed in general 0.1 x which is well below the 
level of observed fluctuations (Figs 16 and 17). 

In the presence of pre-existing noise in the data (as well as noise from overtones), the 
amplitude of errors is not dramatically increased, but the systematic fluctuation pattern in 
the synthetics is somewhat destroyed. When Earth noise is present, there is a trade-off for 
the optimal length of record to take in order to minimize errors, since, the signal to noise 
ratio deteriorates after some time. 

The results of these experiments show that, provided care is taken to  choose the length 
of record appropriately, the observed fluctuations are not dominated by noise and do  
contain some information about higher order effects of lateral heterogeneity. 
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Figure 7. Same as Fig. 6 ,  for the Costa Rica event observed at station PAF (A = 133.76"). 

8 



226 

4.2 S O U R C E  M E C H A N I S M  

E. Romanowicz and G. Roult 

In Fig. 8, we compare observed fluctuations as a function of angular order I ,  for the Costa 
Rica event of 1983 April 3, observed at the GEOSCOPE station SSB, with synthetic 
calculations using two different solutions for the source, both given in the PDE bulletins: 
one is the centroid solution obtained by the CMT method of Dziewonski, Chou 8t 
Woodhouse (1981), the other is the P-wave inversion of USGS. Variable filtering has been 
applied to the data to isolate the fundamental mode. The smooth part, in the observations, 
has been removed by high pass filtering. In the synthetics, only the first-order term in A/ l  
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Figure 8. Costa Rica event of 1983 April 3, observed at GEOSCOPE station SSB (vertical component): 
comparison of observed fluctuations as a function of angular order (a) with synthetics, for two different 
source solutions, (b) CMT centroid solution (4 = 108", 6 = 67", h = 81", h = 28 km) and (c) P-wave 
moment tensor inversion (@ = 125", 6 = 75", h = 90", h = 37 km). The epicentral distance is fixed at 
A = 82.55" corresponding to the CMT epicenter. Notations are as in Fig. 1 and the smooth part of the 
observations has been removed by high pass filtering. The reference model is PREM. See text for 
additional description. 
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tan X has been considered, the factor A being taken as constant and adjusted to  match the 
order of magnitude of the observed amplitudes. The epicentral distance is futed here at 
A = 82.55'. In this example, we shall only discuss the phase of the fluctuations. 

In this case, we see that the observations (8a) present consecutive positive maxima for 
angular order of 1 ~ 2 5 ,  36 and 47, with associated minima for l = 2 3 ,  34 and 45. This 
behaviour is well matched by the synthetic in (8b), corresponding to the CMT centroid 
solution. The P-wave solution, however, matches the first two maxima, but the third one is 
shifted to  I = 45. We are thus tempted to conclude that the centroid solution matches the 
data better, which is not surprising since it is obtained with somewhat longer period data, 
more comparable to the period range of the present observations. We see that a relatively 
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Figure 9. Comparison of three synthetic calculations for the Costa Rica event of 1983 April 3, with 
varying epicentral distance. (a) A = 82.91", (b) A = 82.35", (c) A = 82.20". The source parameters are 
fixed at the CMT solution and only the term in tangent is considered, with a constant multiplicative 
factor, thc same in all cases. 
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small change in the source mechanism (17" in strike, 8" in dip and slip, and depth 9 km) 
can introduce a significant shift in the phase of the fluctuations. We note that the match of 
the CMT solution is not perfect over the whole period range considered (between 1 = 65 and 
70), which can be an effect of the source but also could be due to the epicentral distance 
chosen, as will be seen below. 

Fig. 9 is a comparison of the results of three synthetic calculations, again for the Costa Rica 
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4.3 E P I C E N T R A L  D I S T A N C E  

event of 1983 March 4, observed on the vertical component at SSB. The source mechanism 
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Figure 10. Costa Rica event observed at SSB (vertical component): comparison of observations (a) with 
synthetics obtained using two different laterally heterogeneous earth models; (b) M84 of Woodhouse & 
Dziewonski (1984); ( c )  NA of Nakanishi & Anderson (1984). Notation*is as in Fig. 1 but the smooth 
part of the observations has not been removed. The source parameters and epicentral distance are fixed 
and correspond to the CMT solution. 
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is now fiied at the CMT solution, and the epicentral distance is varied. We see that, as we 
increase A, the phase of the fluctuations changes rapidly. This is particularly visible in the 
case of extrema (when tan X goes to infinity) around orders 2 = 35, 45 and 55 .  The best 
match with the observations (Fig. 8a) is obtained for A 182.4', as will be seen in Section 
5. The sensitivity to epicentral distance leads us, as will be seen in that section, to introduce 
a search for the best fitting A. 
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As noted above (see Section (54)), the amplitude of the fluctuations with 1 depends on 
the Earth's structure in the neighbourhood of the great circle, through the terms Q ,  and 
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Figure 11. Same as Fig. 10 for the Costa Rica event of 1983 April 4 observed at GEOSCOPE station PAF 
with the smooth part removed both from observations (a) and from synthetics (b), model M84, ( c )  model 
NA . 
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Figs 10, 11 and 12 show examples of comparisons of observations with synthetics, using 
two available long-period global models, M84 of Woodhouse & Dziewonski (1984) and a 
model we call NA (Nakanishi & Anderson 1984). For both models, we have used the 
spherical harmonic expansion over the Earth of the local frequency 6 oo which these papers 
provide, and calculated a0, LZk and Rz from it. In both examples, the source mechanism, 
depth and epicentral distance are fixed as given for the CMT solution in the PDEs. The 
relative deviations of eigenperiods are calculated with respect to the PREM model 
(Dziewonski & Anderson 1981). 

Fig. 10 corresponds to the Costa Rica event observed at  SSB, where, this time, we have 
not removed the smooth part of the observations. It is interesting to note that neither model 
matches the data satisfactorily. The smooth part of the spectrum, in this example, is overall 
better matched by M84  than by NA, but the amplitude of the fluctuations is too small for 
M84. 

In Fig. 11, we give a second example, for the Costa Rica event of 1983 April 4 ,  observed 
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Figure 12. Same as Fig. 11 for the Chagos event of 1983, November 30, observed at GEOSCOPE station 
PAF. Smooth part also removed (A = 42.95", h = 1 0  km).  
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at PAF. Here, we have removed the smooth part from the observations by high pass filtering 
and only considered the order (I/Z) tangent term in the synthetics as well. Again model NA 
matches the amplitudes of the observed fluctuations better than M84 above 1 = 45. 

In Fig. 12, we give a third example, for the Chagos event of 1983 November 30, observed 
at GEOSCOPE station PAF (Kerguelen). Here again we have removed the smooth part from 
the observations by high pass filtering and we note the characteristic order 4 periodicity in 
the fluctuations, corresponding to  an epicentral distance close to 45". In the synthetics, we 
only show the first-order term in tan X .  The synthetic data have been multiplied by -0.8, in 
the case of model M84, and -0.4 in the case of NA, to match the order of magnitude and 
sense of variations of the observed fluctuations in the order range 1 = 35-55. This particular 
example shows greater complexity, part of which may be due to  the source (there are clear 
shifts in the phase): none of the models succeeds in matching the II shift in phase of the 
trend of the fluctuations around 1 = 35. 

These three examples (and there are many more, see e.g. Davis & Henson 1986) show that 
the global large-scale models available at present are still somewhat inadequate to explain 
data on particular great circle paths. More importantly to us here, there is clearly some 
additional information contained in the amplitudes of the fluctuations, that could be 
exploited to constrain global earth models better. 

5 First attempts a t  inversion 

Equation (54) shows that, when the source parameters and epicentral distance are fixed, the 
relation between the observed eigenfrequency, as a function of Z, and the Earth functionals 
A(1) and B(1) is linear. It is therefore straightforward to set up an inversion procedure to 
determine A and B .  This is our present goal, and we show here some preliminary results 
based on two examples: the Costa Rica event of 1983 April 3 ,  observed at SSB and PAF. 

C O S T A  R l C A  04/03/83 S S B  22.10 

3 5  4 

~ _ _  oL-T-- 10 8A(dcqrrer " 10.') 

Figure 13 .  Residuals versus A (epicentral distance) curve for the inversion of vertical component 
observations of the Costa Rica event of 1983 April 3 at station SSB. The zero in the abscissae corresponds 
to A = 81.96'. 
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In order to model the variation with 1 of coefficientsA and B,  we have divided the range 

in 1 considered into several intervals and, in each of these, expressed A and B as linear 
combinations of cubic splines, defined so as to keep smooth transitions from one interval to 
the next. Let N be the total number of splines xi used (n  = 4 times the number of intervals). 
We then have: 

N 
~ ( 1 )  = C ai  xi(^ 

i= 1 

N 

' (1)  = C bi xi(') 
i= 1 

and we set up the inverse problem as: 

and solve for ai and bi (a total of 2N coefficients) by least squares, assuming X(1) is known. 
We can vary the size and length of the intervals to investigate the stability of the solution 

and put weights on individual data points, since removing the largest extrema often helps 
improve the overall fit. 
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Figure 14. Comparison of (a) observed eigenfrequencies as a function of angular order to (b) computed 
ones after inversion, for the Costa Rica event of 1983 April 3 ,  on the vertical component at SSB. The 
solid line in (b) is the great circle average 52, as obtained by inversion. 
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In this experiment, the source parameters are kept fvred at the CMT solution of Fig. 8. 
This constraint can later be removed and the search for best fitting mechanism, which acts 
on the phase of the fluctuations, introduced into the inversion procedure. As seen earlier, 
the influence of the epicentral distance can be strong and we can search for the best fitting 
value of A and determine A, for which the least squares residual after inversion isminimized. 
Fig. 13  gives an example of the residuals versus A curve obtained for the case of observatio'ns 
at station SSB. The minimum at A = 82.41' f 0.03' is clearly resolvable. 

In Fig. 14  we compare the observed eigenfrequencies (a) with the calculated ones (b), 
after inversion. The solid line in Fig. 12(b) is the great circle average a,, as calculated by 
inversion, and we see that we can match the observed fluctuations rather well. In fact, in 
both this example and the next, we can explain 95 per cent of the variance in the data. The 
length of each interval for the definition of the spline polynomials is here 16 (in units of 1). 
Fig. 15 shows similar results for the case of the Costa Rica event observed at station PAF, 
with a length of 14  for the intervals defining the splines. 

6 Extension to  amplitude data 

So far, we have only considered observations pertaining to the eigenfrequencies of normal 
modes of the Earth, putting aside any amplitude data. However, observations of similar 
fluctuations on measurements of the quality factor Q are also available. One such example, 
for the great Sumba earthquake of 1977 August 19, was given in Roult et al. (1986). In Fig. 
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MEXICO 11 291978 MLS A,&3 

+O.P 1 I 
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Figure 16. Quality factor (a) and eigenperiods (b)  as a function of angular order for the Mexican event of 
1978 November 29, observed on  the vertical component a t  IPG station MLS (Moulis, France), after 
variable filtering to  isolate the fundamental mode. The data are expressed as  departures from the PRI-M 
model. At the top, (c), the variation of tan [ ( l  + 1/2) A - n/4] isgiven f o r  comparison. 

16, we give another example, for the Mexico event of 1978 November 29, observed on the 
vertical component at IPG station MLS (Moulis, Pyrenees), corresponding to an epicentral 
distance close to 90". We show here observations of both eigenperiods (smooth part 
removed) and quality factor, expressed as departures from the PREM model and compared 
to the theoretical term tan ( k A  - n/4), neglecting the additional angle z due to the source 
mechanism. The Q measurements have been obtained by a method described in Roult 
(1975), using the decay of amplitudes with time, and variable filtering has first been applied 
to the data in order to isolate the fundamental mode. 

The fact that such fluctuations should be observed in the amplitudes is not in itself 
surprising, in view of the theoretical expressions obtained from first order perturbation 
theory (Woodhouse 1984). If we neglect terms due to coupling between modes, the 
amplitude of mode K is indeed given by: 

where R E  and Sk  have been defined in Section 2 and w K  is the eigenfrequency of mode K 
calculated for the reference spherically symmetric model (here AK is calculated with a 
slightly different definition of the splitting matrix). This implies that the attenuation factor 
will contain, through 2AK/wK, a term in tan ( k A  - 71/4). 

In the case of amplitudes, however, we cannot set up an inverse problem at present, since 
terms coming from the coupling between modes are likely to contribute to the first-order 
asymptotics. This will be the subject of a later communication. 

7 Conclusions 

We have shown that a significant amount of coherent information is contained in the 
fluctuations with angular order of observed eigenfrequencies, adding to the variance in the 
data. By using first-order asymptotics, it is possible to retrieve: (1) more accurate 
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estimates of the great circle average Qo of the local frequency, and (2) estimates of the 
derivatives of Ro , which will yield additional constraints on the structure in the neighbour- 
hood of each great circle. First attempts at inversion of single station, single mode eigen- 
frequency data, using as wide a frequency band as possible, look promising. The analysis by 
such a method of a collection of single station measurements over a set of great circles 
covering the Earth should provide better constraints on the even part of lateral heterogeneity 
in the Earth’s mantle and increase significantly the amount of data variance that can be 
explained. 
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Appendix A: approximation of integrals by the method of stationary phase to order (110 
Let Z(X) be of the form: 

I ( X )  = JAB g(X,Cc) cos [WP)l  dP 

where k = 1 + 1/2. 
We know how to evaluate the contribution to this integral from the neighbourhood of a 

stationary point p o ,  such that F ' ( p o )  = 0, using the approximation of stationary phase to 
order zero (e.g. Burridge 1962). If we want the approximation to be valid to order (l/Z), we 
need to expand g and F in the Taylor series around po , keeping as many terms as necessary: 

g(X,P)=gO+ugl+-gg,+ . . . . .  

U 2  u3 u4 
F@) = Fo + - F" + - F"' t- F"" t . . . . . 

2 3 !  4! 

where we have set: u = P - PO 

2 

ag ag2 

aP a l l  
go =g(h,po) ;  g, =-@,Po); g2 = T ( L P o ) ;  

a 4  F (po); F"" =- o) ;  F"' =- a3  F 

aP av3 
a2F F" = __ 

To evaluate the contribution Zo to I(h) from the neighbourhood of po , we can extend the 

aP4 (Po>; (P 
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limits of integration to infinity and write, to order 1/E: 

I. = Re (A + B +  C) 

where : 

A = g o  exp (ikFo) + u3 __ + u4 - 
3! 

B = g ,  exp (ikF,) 

C = - exp (ikF,) 
g2 

2 

Pekeris (Worzel, Ewing & Pekeris 1948) gives an expression for the term A 

ih 

where the term in (ihlk) is added to the classical order zero stationary phase approximation, 
with: 

5 ( ~ 1 1 ' ) 2  1 F"" 
h=--- 

24(F")3 8 (F")" 

The * sign is + if F" > 0 and - if F" < 0. 
Furthermore, we have B = 0, since 

x exp (ikx) dx = 0 s 
and, in the calculation of C, we use the classical result: 

X' exp(ioLT2)dx= s 
with + if (Y > 0, - if (Y < 0. Then: 

g2 1 2n 
C=-exp [.. ( kFo i%)]J __ (L) 

2 k I F" I kF" 

Finally : 

Application to the calculation of the location parameter 

In the present application, F(p)  is of the form: 

kF(p) = kp - - + rn - + - cot 
71 n n  

4 2 k  
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where m and n are integers, and (Fig. 4); 

B. Romanowicz and G. Roult 

cos 0 = cos h cos A + sin h sin A cos p ,  

being chosen so that 0 < < n. 
The stationary points of F are, to order (l/l), those of (3. We have: 

a0 
aP 

sin 0- = sin h sin A sin p.  

The stationary points are therefore p = 0 and p = n. This corresponds, as expected, t o  points 
located on the great circle containing the source and the receiver (Fig. 4). We then have: 

sin h sin A 
= &' with cos Po = cos (A - A). 

a2F a 2 g  
- (0) =- (0) = 
ap2 ap2 sin Po 

Also : 

F " ' (0)  = 0, 

which yields: 

In the same manner: 

1 h(n)  = - 7 + 3 cot (3, 
8 Y 1  P, 

Appendix B: evaluation of integrals a1 and fZ2 (equations 16 and 27) 

Let us consider the spherical harmonic expansion of the local frequency 6wo: 

6wo(h,p)= c w;" yTW.4. 
1, m 

Then, according to Backus (1964): 

('43) 

where (0, a) are the coordinates of the pole of the great circle y and PI is the Legendre 
polynomial of degree 1. 

In the epicentral coordinate system of Fig. 4, we have: 

= cot A I1 - I2 

where: 
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Then, using (BI), Backus' relation and (B2): 

Also: 

I ,  = - c (- m 2  ) a? 

We can make use of the following recurrence relation (Gradshteyn & Ryzhik 1965): 

cn 1 

2n 
cot h Y;" (A, 0)  d h  

where Py are Legendre functions (not normalized). 
Let us  set Xj"' = a? Pj"'. Then:  

and, using (BS) at  h = n/2 

Hence: 

a2R, a 2 q ,  
a a 2  a o a a . '  i22 = cot A- - ~ 

In the same manner: 

Expressions (B7) and (B8) are the same as those reported in the appendix of Davis & Henson 
(1 986). 




