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Summary. Starting with the first-order formulation of quasi-degenerate 
splitting theory for the normal modes of a laterally heterogeneous earth, we 
have obtained an asymptotic expression for the coupling terms corresponding 
to neighbouring multiplets along the same dispersion branch as the mode 
considered, valid to order 1/1, where 1 is the angular order of this mode 

We show that, to order zero, these coupling terms introduce a small shift 
in epicentral distance into the expression for the long period seismogram 
obtained by normal mode summation. This shift depends on the difference 
between the great circle and the minor arc averages of the local frequency. 
The coupling terms thus permit us to reconcile results obtained by normal- 
mode summation and by a propagating wave approach, as far as the 
dependence on structure of the phase of surface waves is concerned. 

To order 1 / 1 ,  the coupling terms result in a perturbation in the amplitude 
of the mode considered, which depends on spatial derivatives of the local 
frequency and thus on the structure in the vicinity of the s.ource station 
great circle path. We show that this term is equivalent to that which is found 
using ray perturbation methods for propagating surface waves. We compare 
and discuss the assumptions underlying both approaches and illustrate, by an 
example, the potential of the asymptotic normal-mode formulation for 
improved modelling of lateral heterogeneity in the earth. 

(I, 1). 
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Introduction 

Measured eigenfrequencies of the Earth’s normal modes present shifts with respect to 
predicted values for a spherically symmetric earth model that are attributed to lateral 
heterogeneity. They are usually interpreted in the framework of the geometrical optics 
approximation, in its lowest-order asymptotic expression. According to this theory, they 
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represent the average, over the great circle path containing the source and the station, of the 
local frequency, a parameter which represents t h e  local properties of the structure at each 
point on the Earth. The overall validity of this approximation is confirmed by the consistent 
patterns over the Earth obtained by plotting, for given modes, the measured frequency shift 
as a function of the pole position of the source-station great circle (Masters e l  al. 1982; Davis 
1986). 

Several types of observations have recently been accumulating which tend to indicate that 
there are measurable deviations from this asymptotic theory. One example is the systematic 
observation of fluctuations in the observed frequency shift of a mode as a function of 
angular order, as pointed out in the past (Jobert & Roult 1976; Silver &Jordan 1981) and 
recently documented on the basis of the collection of data from the GEOSCOPE network 
(Roult, Romanowicz & Jobert 1986; Romanowicz & Roult 1986). Such fluctuations are not 
accounted for in the lowest-order asymptotic theory classically considered. Another example 
is the relatively frequent observations of amplitude anomalies on successive long-period 
surface-wave trains (Lay & Kanamori 1985). The latter are thought to be largely due to 
deviations from great circle propagation and focusing effects due to lateral heterogeneity. 
Several techniques have recently been developed to model these effects using propagating 
surface waves (Yomogida & Aki 1985; Jobert 1986; Woodhouse & Wong 1986). 

On the other hand, multiplet frequency shifts are generally viewed in terms of first-order 
degenerate perturbation theory. To describe them Jordan ( 1978) introduced the ‘location 
parameter’, which is formally expressed in terms of the splitting matrix of the mode 
considered, and asymptotically yields the great circle average of the local frequency (Jordan 
1978; Dahlen 1979). As for the fluctuations in the observed frequency shifts, it has been 
suggested by Dahlen (1982, unpublished) that they could be explained by higher order 
effects in the geometrical optics approximation of the location parameter. In a recent paper 
(Romanowicz & Roult 1986), we derived an asymptotic expression, valid to order 1/1, where 
1 is the angular order of the mode, for the location parameter, using a stationary phase 
method and simple geometrical relations on the sphere. The results were favourably 
compared with observations in an attempt to set up an inversion scheme for a more accurate 
determination of the great circle average of the local frequency, and to obtain some estimate 
of its spatial derivatives, which appear in the term of order 1 /1. 

The location parameter, however, only depends on the even part of the spherical 
harmonics expansion of lateral heterogeneity, and is therefore only of limited interest for 
the study of the Earth’s large-scale structure. Moreover, the seismograms ob’tained by 
normal-mode summation using first-order degenerate perturbation theory also depend only 
on these even terms. To remedy this shortcoming, Woodhouse & Dziewonski ( 1  984), in their 
seismogram calculation by normal-mode summation, introduced a small shift in epicentral 
distance, which depends on the difference between the great circle and minor arc averages 
of the local frequency, by an argument of consistency with surface wave results. In fact, the 
information about the odd part of the asphericity contained in the long-period seismograms 
is a consequence of coupling between different multiplets (Madariaga & Aki 1972; Luh 
1973 ; Dahlen 1979; Woodhouse 1983). Quasi-degenerate perturbation theory has to be used 
to include these effects, and its formulation, to first order, has been derived by Woodhouse 
(1983), who also conjectured that it is the coupling between neighbouring multiplets along a 
given dispersion branch that yields the main dependence of normal modes on the odd part 
of the heterogeneity. Although some attention has been given to coupling terms in the 
literature (Dahlen 1969; Luh 1973, 1974; Park 1986), they are usually neglected in normal 
mode studies because of the formidable complication represented by the calculation of the 
corresponding splitting matrix terms. 
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In this paper, we apply the same asymptotic method to order 1 / 1  as developed previously 
for the location parameter (Romanowicz & Roult 1986, hereafter referred to as Paper I) to 
the coupling by lateral heterogeneity of neighbouring multiplets belonging to the same 
dispersion branch. We show how the dependence on the odd part of heterogeneity is 
introduced both in the phase and in the amplitude of normal modes, how we can reconcile 
several aspects of normal-mode versus propagating wave approaches, and, in particular, how 
we can now produce realistic surface-wave amplitude anomalies by normal-mode summation 
in an aspherical earth. 

First order quasi-degenerate perturbation theory 

Using quasi-degenerate perturbation theory complete to first order, Woodhouse (1 983) 
derived the following expression for a given component s(t ,  A) of the acceleration observed 
at time t and angular distance A from the source: 

s ( t ,  A) = Re 1 exp ( i w k t ) )  , L 
where the summation is taken over multiplets K ,  and attenuation has not been included. 
Here, cdk is the eigenfrequency of multiplet K in the reference spherically symmetric earth 
model and: 

where { H K }  is the splitting matrix for multiplet K ,  and {PK} is the matrix of perturbations 
in density. The expressions for { H K }  and {PK} in the case of an isolated niultiplet can be 
found in Woodhouse & Dahlen (1978) and Woodhouse & Girnius (1982'). In these papers 
different normalizations of eigenfunctions have been used. We follow here the notations of 
Woodhouse (1983) in which the vertical eigenfunctions sp corresponding to multiplet K in 
the reference spherically symmetric model, are normalized according to: 

Ju po(r)  sp s r , ' r2dr  = 6 k k 1 6 m m  ', (3) 

where po is the density distribution in the reference model and integration is extended to 
the volume of the whole earth. With these conventions, { H )  and (2 )  have the dimensions of 
frequency. 

Expressions for the coupling terms Zmm,'  = Hmm.' - cdiPP7' can be found in 
Woodhouse (1980). R" and Sp are, respectively, receiver and source functions, which can 
be written as follows using an operator formalism, as in Paper 1: 

K K  K.K 
K. 

RKm(&Ad= OPl[Yr"(~,,&Z>l 

SKm(e,, = oPZ[y;1(e,> @,)I 
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with operators: 

Op, = (v * D), 

where M is the moment  tensor describing the source, D is the displacement operator, e the 
strain operator and v the instrument operator. 

Op, = (M : f*), 

Equation (1) is often written in the form (Woodhouse 1983;  Tanimoto 1984): 

where = wk + A K .  A K  is the location parameter of Jordan ( 1  978): 

c Rni H m m '  - w z p m m '  
K (  K k K 

min ' 

m 

and 

(4) 

We note  here, however, that this formulation is valid only away from the nodes of the 
radiation pattern, for which the denominator in (4) is close t o  zero, and implies neglecting 
coupling terms in the definition of A K .  

Woodhouse & Girnius (1982) showed that the splitting matrix {HK} for a single multiplet K 
could be expressed in terms of  three local functionals 60; of the Earth's structure as 
fo  1 1 ow s : 

H;m' = 'F IS, s w ; ( e , $ ) k F r n ' ( e , $ ) d a 2 ,  (7) 
i= 0 

where the kernels are: 

here, V ,  is the gradient operator on  the unit sphere, Y;" are fully normalized spherical 
harmonics, 1 is the angular order of  multiplet K ,  and it can be shown that 6wE is the local 
frequency as defined by Jordan (1978). If we  now consider the terms of the splitting matrix 
corresponding t o  coupling between multiplets K and K ', we show in Appendix I that we can 
similarly define local frequencies 6wf;, ,( i= 0, 1, 2 ) ,  such that: 

where I and 1' are the angular orders of multiplets K and K ' ,  respectively. The expressions 
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for 6wEkt  and 6wL are given in Table 1,  for the case of spheroidal modes. We note that if 
K = K ' these expressions are the same. 

In this paper, we shall be interested in evaluating expression ( 2 )  for the complex 
amplitude of multiplet K using an asymptotic approach. The first three terms of ( 2 )  contain 
familiar expressions that have already been calculated in Paper I. Let us for the time being 
concentrate on the calculation of the last term, which contains the contributions of coupling 
with other multiplets. 

Let SK be the contribution to AK from coupling with other multiplets: 

P K , K + ,  (1  1) 2wk  
s K =  

K ' f K  - 0:. ') 

with: 

Using the same operator formalism as in Paper I and as mentioned above, we can transform 
expression ( 1  I ) ,  using (9) and (lo), to: 

(13) 
with: 

op, = Op, ( -  v:yop*. 
It is possible to move the operators outside the summation on m and m',  since they do not 
depend on the azimuthal order. We also keep in mind that Op, acts on the receiver 
coordinates (OR, QR), 0 p 2  acts on the source coordinates (&, 4s) and V1 on the running 
coordinates (0, @) on the unit sphere Q. 

The addition theorem for spherical harmonics (Edmonds 1960) yields: 

and two other similar expressions with the indexes 1 and 1' interchanged. The angles X and 
0 are defined in Fig. 1 and k = 1 + 112, k' = 1' + 112. 

Then: 
i=2  I 
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Figure 1. Epicentral coordinate system used in this study. S is the epicentre, R the receiver, Q a point on 
the surface of the unit sphere, and P the pole of the source receiver great circle y. 

with: 

where Q is the running point on the sphere (Fig. 1) and the integrals are taken over the 
unit sphere. 

Spheroidal modes on the vertical component: the case of an isotropic source 

In this simple case, operators Op, and Op, amount to multiplications by constant factors, 
such that: 

where M o  is the scalar moment of the source and: 

a k k ’ = - l a r u ( r s ) +  2[u(r,) - l ( l +  1)/2 v(rs)]/rslu(a) 

ak’k = - [a,r/’(r,)+ 2[U’(r,)  -l‘(l’+ 1)/2V’(rs)]/rs]U(a). (18) 

Here U, V are the vertical eigenfunctions of the reference model in the notation of Gilbert 
& Dzienwonski (1975), evaluated at the source ( r  = r,) and at the receiver ( r  = a). Unprimed 
and primed functions refer to multiplets K and K ’  respectively. 
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RESTRICTION T O  A S I N G L E  D I S P E R S I O N  B R A N C H  

In what follows, we shall only consider the contribution to SK (equation 11) from modes K '  
belonging to the same dispersion branch as mode K .  We shall then set k' = k + n ,  with n an 
integer, and assume that In 14 1, so that n/l is of order 1/1. 

This assumption implies that multiplets K and K '  are close together so that the radiation 
pattern and vertical eigenfunctions for multiplet K '  in the reference model are only dighly 
perturbed from those of multiplet K .  Recalling that, when K = K ': 

6O',,,* = 6O',<$, = 6wL; 

we shall write: 

akk'60;k'  = akk60;  + 7; 

ak 'k6W; 'k  = akk60: + 6;, (19) 

where 60: is the ith local frequency corresponding to multiplet K as defined by.Woodhouse 
& Girnius (1982), and 7; ,6; are small perturbations. We can then write to first-order in the 
earth model perturbations: 

and we shall neglect in what follows contributions to J; ,Kl  coming from the perturbation 
terms in (1 9). We shall come back to this approximation later. 

We shall now proceed to  evaluate the integrals in expressions (20) approximately. For this 
we shall be using the asymptotic expression for the fully normalized spherical harmonic Yp 
(Robin 1958), valid to order 1/1: 

Yp(x)  = ~ cos kX 7r cot*) f O ( l / I * )  
rt/ sin ' x ( 4 8 k  

and we shall evaluate the integrals in (20) approximately to order Ill, using, as in Paper I ,  
the stationary phase approximation to that order, whose expression was derived in Appendix 
I of Paper I and is given here for reference in Appendix 11. We shall also be concerned only 
with the term J i , K # ,  as we can show by the same method that the integrals in and 

lead to terms of order l / l z ,  which we shall neglect. We can then write: 

J i , K ' = M O  &kk('l +I?.)  (22) 

with: 

To evaluate I , ,  we shall consider a 'receiver' coordinate system ( f l ,p ' ) ,  as defined in Fig. 1 ,  
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so that, using (21) and expression (11.2) of Appendix 11, we obtain: 

jozn cos (kp -7- k 1  

2n 2nZd/sin A 
I ,  = 4- 

+-- X [ S o ; ( f l ,  0) cos (k'ho -5) -sin (k'ho --?)(% I a26u')] do, (24) 
2 8k'X: 2k'X: 

where: 

az x 
ap '2 sin ho 

sin 0 sin A 
h o = h ( j 3 , 0 ) = f l + A ;  X ~ = - ( ( p , O ) = -  . 

Similarly, Iz is evaluated using the 'epicentral' coordinate system (h ,  p)  defined in Fig. 1, 
yielding: 

IOzn cos (kh - 4 - 
2 5  2nz d s i n  A 

with: 

Replacing k '  by k + n  and expressing, in the case of 11, ho and h: in the epicentral 
coordinate system (A, p),  we thus obtain after a little algebra: 

x cos k A  -- [[COS (nh) + cos [n(h - A ) ] ]  [ ( 1) 
[sin [n(h - A ) ]  - sin (nh)] dh  1 

[[ - sin [n(h - A)]  + sin (nh)] 

[cos (nh) + cos [n(h - A ) ] ]  dh i n  
with: 

cot A 1 
Bk(X, 0 )  =- 6w;(h, 0 )  + - - . 

8k 2kp: ap2 

The first integral in (28) gives rise to a term of order zero in 1/1 and the second one to  a term 
of order 1/1 which contains spatial derivatives of the local frequency. 

We shall now proceed to further evaluate the line integrals in (28). 
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( I )  Terms 'of order zero' 

Let: 

I," = 1 6oE(X, 0) [cos (nh) + cos [n(h - A ) ] ]  dx 
Zn 

JP = lZ 6w;(h, 0) [sin [n(h - A ) ]  - sin (nh)]  dh. 

We note that I[ is even and J: is odd in n .  To order zero in 1 / 1 ,  we have from (28) and (30), 
with k'  = k + n :  

k 1 
'€? .K  = M o  ./zg (yk k 2n2 dsin A [I," cos ( k A  - n/4) + J i  sin ( k A  - n/4)]. 

We note also that within the approximation considered here: 

'V -2nwkU/a, ( 3 2 )  2 
O k  - O k + n  

where a is the earth's radius and u= a ( b k / a k )  is the group velocity at frequency wk. From 
equations ( 1  l ) ,  ( 1  5 ) ,  (28), (3 1) and ( 3 2 ) ,  it follows: 

a 1  Jk" 
S i  =M, ,&akk - sin ( k A  - n/4) 1 - - , 

U 2n2 d s i n  A n f ~  n 
( 3 3 )  

where PK is the contribution of order zero (in our approximation) to S K .  Now, since for 
n f O ;  

A sin nh - sin n(h - A )  
= Re jo exp [in@ - @)I d@, 

n 

we have from (30): 

J" 

n 

A 

= - Re /,**Sw~(h, 0) 1 exp [in@ - @)] d@ dx 

A 
= - 2n Re 1 exp ( - in@) d@ (So:)", 

where ( 6 ~ : ) "  is the nth Fourier coefficient in the decomposition of 6wg(h, 0): 

( 6 o i ) n  = /, 6w:(h, 0) exp (inh) dh. 
1 2 n  

Finally: 

c ;-- Jk" - 277 Re [ d@ 

= 2nA(6& - 6;). 

A A 

( 6 ~ : ) "  exp ( - in@) + 271 Re [ dt@w:)' 
nZO n 

(34) 

( 3 5 )  

(37)  



84 B. Romanowicz 
where we have defined: 

1 r 2 n  

the integrals being taken along the great circle containing source and receiver. We thus 
obtain: 

We note in (37) that if no is the highest order of Fourier components present in 6w(X, 0), 
then only multiplet interactions with n < n o  should be taken into account. Also, the 
knowledge of no determines above what frequency this asymptotic theory is valid. The great 
circle theorem can also be understood from (37), since neglecting coupling terms amounts to 
considering only the n = 0 interaction, therefore only the n = 0 Fourier component can be 
retrieved in that case (R. Snieder, private communication). 

(2) Terms 'of order 111' 

Let SJ; , I  be the order 111 contribution to J; , , , .  Setting: 

61; = [ Bk(h, 0)  [CoS [n(h - A)] + COS (nh)n d h  

S J ~  = S, Bk(h, 0)  [sin [n(h - A)] - sin ( n ~ ) ]  d h ,  

where Bk has been defined in (29), we then have: 

2n 

0 

2n 

SJ;,,< = Mo & (Ykk [&I: sin (kA - n/4) - SJ; cos (kA - n/4)]. 
2n 2n2 Jsin A 

Since 61: is even and SJ; odd in n ,  using (1 l), (15), (40) and (41), we obtain: 

SJ,. 
C O S ( ~ A  - n/4) 1 ~ 

n f ~  TI 

We then proceed to  calculate the sum in (42), following the same steps as in equations (34)- 
(37), where we replace Sag by B,. We finally obtain: 

Mo ( Y k k  /$ cos (kA - n/4) 
8k 

6 s K  = 
n 4 sin A 

where we have defined: 

(43) 
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with ( e , # )  the coordinates in a polar coordinate system (Fig. 1) and: 

The integrals are taken along the great circle y containing the source and the receiver. We 
note that in (44) D k  is the second transverse derivative with respect to the great circle. 
Expression (43) is therefore valid regardless of the reference frame chosen. 

C O M P L E X  A M P L I T U D E  O F  M U L T I P L E T  K 

Let us now go back t o  expression (2) for the complex amplitude of multiplet K .  In this 
expression, the first term is the amplitude A: of multiplet K in the reference spherically 
symmetric model: 

Using the same order of approximation for the spherical harmonic in (46), this yields: 

M O a k k  Y k c o s  ( k A  
= IT Jsin A 

The second term in (2) is: 

(47) 

where NUM(AK) is the numerator in the expression for the location parameter A,, whose 
expression to  order ( l / l )  was obtained in Paper I (equation 15): 

I j  
NUM(AK) = MO@-kk 4: k w  cos ( k A  - n/4 - cot A/8k)  + - sin (kA  - n/4) 

IT d s i n  A 2k 

(49) 

where we have assumed that H F m '  
approximation considered. 

from (39) and (43): 

H Z m '  - w 2 P m m  ' , which is justified within the 

The contribution S, from multiplets K '  # K along the same dispersion branch as K is, 

1 

rr d s i n  A 
4:: [sin ( k A  - n/4) (6; - 6&) SK =MoCrk, ~ 

- cot A 
-1- cos ( k A  -  IT/^) (b - D )  + - 

8k 
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In practice, the term A ;  is of order l /wkt  with respect to S, so that we can neglect it, since 
we are considering, in general, times much larger than one period. 

The third term in equation ( 2 )  is again the numerator of the location parameter AK 
multiplied by (it). 

Finally, we can write the complex amplitude of multiplet K as follows: 

A ,  + SK i- i f  [NUM(AK)] 

or, using approximate expressions up to order 1/1  (equations 46 ,49 ,  50): 

aA - 
Mo(Ykk ik [cos (kA  - n/4  - cot A/8k)  + - (60 - 6G) sin (kA  - n/4) 
n d s i n  A U 

AK = 

-I- cos ( k A  - (6cj - 6;) 
8k 

I. 6 
+ it[&; cos ( k A  - n/4 - cot A/8k)]  + - sin ( k A  - n/4) 

2k 

and we note that we can write, to order 1/1: 

R e ( A K ) ' = = A k ( A + 6 A )  [1 +6F(A)1, 

where we have defined a shift in epicentral distance: 

aA 

kU 
6 A  =-(ti& - 6;) 

and an amplitude perturbation: 

aA b - b  c o t A  
6F(A)=u(T +- 8k 

We note that 6 A  is the same shift in epicentral distance as introduced by Woodhouse & 
Dziewonski (1984) to account for the odd part of lateral heterogeneity in their synthetic 
seismogram calculation by normal mode summation. The synthetic seismogram obtained 
here can also be written, away from the zeroes of &(A + 6A),  in the form: 

where A, is the multiplet frequency shift. As we shall see below, this expression differs 
from that of Woodhouse & Dziewonski (1 984) essentially by the amplitude perturbation 
term 6F(A), and it is this term 6F(A) that governs the amplitude variations of the 
propagating surface waves. In order to avoid problems near the nodes of the radiation 
pattern, we shall however prefer to write s( t ,  A )  in the form, valid at all epicentral distances 
away from the poles ( A  = 0, n): 

s(t, A )  = Re 1 ak [GI ( A )  cos ( k A  - n/4) + G,(A)  sin ( k A  - n/4)] exp ( iwkt) ]  , (57) 
i k  
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where : 

1 aA 6 - i  c o t A  

U 

cot A aA 

8k U 

G l ( A ) = l + -  [(~c) + ~ ( 6 & - 6 ; ) ]  + i t 6 &  

D cot A 
2k 8k 6i). Gz (A) = __ -- 

Before discussing the consequences of these results, we shall present the corresponding 
derivation in the more general case of a source represented by a moment tensor {Mij). 

General case: source represented by a moment tensor {Mi,} 

Going back to equations (13) and (16), we have in this case: 
* 

OP 1 [ yp (A) Y?(P)I = box: (A) -f- a 1 x: (A) i- a2 x;" @)I YP.(S) U ' ( 4  

Op1 [Y;,(A) Y;@)]  = [aiX;(A) + aIX,I,(A) + U;X:,(A)]  Y ~ ( O )  U(a) (59) 

with, using the notations of Gilbert & Dziewonski (1975): 

a. = - [Mrrar U + (Moo + M@O) (U - f2V/2)r-'] 

a ,  = + t / l ( l +  l)(Md cos@+M,.@sin$) 

V 

r 
az  = - / ( I +  1) -[(Moo - M@@) cos 24 + 2 Me@ sin 2$] / 2 ,  

I North 

' South 
Figure 2. Definition of angles @ and @R as used in text. 
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where f = dk/2n ,  4 = 4R t. p, the angle @R is defined in Fig. 2, and the eigenfunctions U, V 
and their derivatives are evaluated at  the source depth. We have similar expressions for 
uE!, i = 0, 1, 2, replacing 1 by 1'. 

As in the case of an isotropic source, we shall restrict ourselves to  multiplets belonging to  
the same dispersion branch, with n -s I ,  and replace primed functions in (59) by unprimed 
ones, 6wEkt and 6oEt, by 6wg and consider only JL,Kl for i = O .  Following the steps of 
Paper I ,  we can write Q ,  and a2 in the form: 

a , ( $ ) = A l  c o s p + B ,  s i n p  

u2 (') = A2 cos 2 p  + B, sin 2 p  (61) 

with: 

A 1 = a1 ( 4 R )  

so that: 

We note that Z ,  has been evaluated previously, when dealing with the case of the isotropic 
source. Similarly, we can apply the stationary phase method to evaluate the other four 
integrals, making use of the asymptotic expansion (paper I) of the normalized Legendre 
function X;lt to order 111. In each case, we obtain an expression of similar form as equation 
(28), from which we infer, after some algebra, 

To order zero: 

k UA 1 

217 U n t / s inA 
[ Q ,  cos (kA - n/4) + Q2 sin (kA - n/4)] 

with: 

Q ,  = (6; - 6Lj)A, 

Q2 = (6; - 6G) (ao - A 2 )  
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We verify that, as for the case of the isotropic source, the perturbation in the real part of the 
complex amplitude due to (65) amounts to a shift 6 A  in epicentral distance, as defined in 
(54). 

To order ( 1  / f ) ,  we obtain: 

k aA 1 J 2 n  U n d s i n A  
6S,=  -- [6Q1 cos ( k A  - n/4) + 6Q2 sin ( k A  - n/4)] 

with: 

6Q1 =(ao  - A 2 )  
8k 

A ,  cot A B2 .. - 
+ 2  (6cj  - 6;) - 2-(E - E) 

k k 

1 cot A cot A Bl (6& - 6;) -- (2 - @, (67) 
6Q2 = - A ,  (--(&-d)+- 8k k 

where we have defined: 

We note that the integrands on the left-hand side of (68) are the transverse gradients with 
respect t o  the great circle. Expressions (66) and (67) are therefore valid regardless of the 
reference frame. Recalling the order 1/1 expression given in equation ( 2 5 )  of Paper I: 

1 R;(H;~' - u2pmm' )SF' = Q3 cos (kA  - n/4) + Q, sin (kA  - n/4), k K  
m m '  

with: 
b B 

Q, = (ao - A 2 )  6; + A - + (L - -!- ) A cot A 6& + B ,  - 
2 k  8 k  2 k  k 

& a. l? 
Q4 = - A 1 6 6  +(ao  -A2)-+-cot A s ; +  (i -- 8i) - A26& - 2B2 - 

2k 8k k 
and since: 

we obtain, to order Ill, using ( 2 ) ,  (65) to (71) and the order 111 approximation to the 
Legendre functions: 
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with: 

cot A aA 

U k 8k 
+ A 2  (A-L) co tA+- (Qz+6Q2)+ i tQ4  Gz(A)= - A ,  + 7 (73) 

We verify that, in the case of an isotropic source ( A ,  = A z  = B ,  = B2 = 0) ,  expressions (72) 
and (73) reduce to (57) and (58), respectively. 

Consequences for normal modes and propagating surface waves 

1 E X P R E S S I O N  F O R  T H E  MULTIPLET F R E Q U E N C Y  S H I F T  

In equations ( 7 2 )  and (73), C, and Gz have the form: 

G, = a, + itOl 

G2 = a2 -I- it&. (74) 

According to equation (4), s(t, A) can be written, for short enough times, and away from the 
nodes: 

i- a, sin (kA - n/4)] exp [i(wk + Ak)t] , (75) 1 
where the multiplet frequency-shift with respect to the reference spherically symmetric 
earth model is now: 

p1 cos (kA - n/4) + 0 2  sin (kA - n/4) 

a1 cos (kA - n/4) + a2 sin (kA - n/4) 
AK = 

We first note that, to zeroth order in (1/1) and in the model perturbations, this expression 
comes down to: 

A; = 6 4  (77) 

which is the familiar result of the lowest order expression of the geometrical optics limit 
(Jordan 1978; Dahlen 1979). 

If we now go back to expression (75) and consider terms up  to order (l/Z), we note that 
we can write, away from the nodes of the radiation pattern: 

with: 

282(ao - ' 4 2 ) + A , B 1  
X =  

(a0 - A2)2  + A ;  ' 
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a result obtained previously using degenerate perturbation theory and asymptotic 
expressions for the location parameter (Romanowicz & Roult 1986). To order (I l l )  and to 
first order in the model perturbations, the multiplet frequency shift depends only on great 
circle averages of the local frequency and its spatial derivatives, and not on the minor arc 
averages. 

2 C O N T R I B U T I O N  TO T H E  PHASE O F  S U R F A C E  WAVES 

For simplicity, the following derivation will be presented for the case of an isotropic source, 
but it can readily be extended to the more general case of a source represented by a moment 
tensor. Going back to expression (57) and the corresponding definitions (58), we can express 
in them cos ( k A  - n/4)  and sin ( k A  - n/4) in terms of exponentials, so that we obtain: 

( ' ( A )  - ic2 
2 

exp [i(kA - n/4)]  

Cl(A) + iC A 

2 
+ '( 'exp [ - i (kA  - n/4 ) ]  (79) 

Transforming the discrete sum over k into an integral over the continuous variable v, such 
that v = k when I is an integer, using for example Watson's transformation (Aki & Richards 
1980) and the residue theorem, we shall obtain two families of terms whose phases are of 
the form: 

9 ' = w t - k A - n / 4 +  . . .  
9- = a t  + k A +  n/4 + . . . . 
The first family of terms will give rise to odd-order trains of surface waves (Rl ,  R ,  . . .) and 
the second one, to even-order trains ( R 2 ,  R4 . . .). We shall only be interested here in the 
first term from which we shall extract the first Rayleigh wavetrain R 1 .  To obtain its 
amplitude and phase, we need to consider the exp [ - i (kA  -1- n/4 ) ]  term in equation (79): 

R,(t, A)  = Re 1 a k / 2  exp [ i ( a k t  - k A  - n/4)1 [Cl(A)+ i G z ( A ) ] .  (80) 
K 

When isolating the first arriving train, we can replace in expressions (58) the time t by aA/U, 
this substitution being valid to  order zero in 1/1. We then obtain: 

aA U - co tA)  8k . 
6 cot A 

c l ( A ) +  iG2(A)= 1 t- -6;) + i ( -6wi  - 

The phase of the first surface wave train will therefore be: 

a A  cot A 

U 8k 
9 =  a t  - k A  - 4 4  +-6; + __, 

but: 
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where Co is the phase velocity in the reference spherically symmetric earth model, 6C is the 
perturbation in phase velocity, and the integral is taken along the great circle y. Hence: 

cot A 

8k 
9=ut--Cd n14-1- -, 

where C is the phase velocity in the perturbed model. We obtain in this way, the correct 
expression for the phase of the first Rayleigh wave train, which, in particular, takes into 
account the variation of structure along the portion of path between the source and the 
receiver. We therefore see that, as conjectured by Dahlen (1979), we need to include the 
contribution of multiplet-multiplet interaction in order to reconcile the normal-mode and 
propagating-wave approaches in the lowest order approximation of the geometrical optics 
limit. At the same time, the perturbation 6A explicitly introduces into the synthetic seismo- 
gram the effect of the odd part of the lateral heterogeneity. 

We note that the term cot A/8k in (84) comes from the order (l/Z) approximation to the 
Legendre function and is the same correction as introduced by Wielandt (1980) in his study 
of the polar phase shift. In the more general case of the moment tensor source, the phase 
9 differs from (84) by an additional source phase. 

3 A M P L I T U D E  P E R T U R B A T I O N  IN T H E  P R O P A G A T I N G  S U R F A C E  W A V E S  

Let us write in equations (58) and (73): 

G , ( A ) = G : ( A ) + ~ G ,  

G2 (A) = G; (A) + 6 G 2 ,  (85) 

where G: and G; are the corresponding expressions for the reference spherically symmetric 
earth: 

Gf(A)=(a,  - A z )  - A l  
( 2 :  8:) cotA 

cot A 

1 +Qo- ( t  8 1 ) .  8k 
+ A , c o t A  --- G;(A) = - A  

Then, the relative perturbation in amplitude for the first arriving surface wavetrain will be, 
to first order, using (79) and (86): 

6A - GPGG, + G26Gz -- 
A (GP)2 +(G;)z * 

In the case of an isotropic source, for which A ,  = A2 = 0 ,  and using (58), this yields: 

6A 

A 

which can be written in terms of perturbation in the phase velocity (at constant frequency) 
instead of the perturbation in local frequency (at constant k ) ,  as follows: 
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The expression in (89) is the same as obtained by Woodhouse & Wong (1986) for the 
perturbation in amplitude for a surface wavetrain using a ray perturbation approach. 

In the more general case of a moment tensor source, there is an additional term involved 
due to the radiation pattern of the source, and: 

6A 2Bz(ao - A z ) + A , B ,  

A (ao -Az ) ’  + A :  

As an illustration to the preceding calculations, we present, in Fig. 3, the synthetic seismo- 
gram calculations showing how we can now produce amplitude anomalies by normal-mode 
summation using this asymptotic formulation. The example is taken from the case of the 
Akita Oki event of 1983 May 26 observed at the GEOSCOPE station PAF, for which the 
source-station great circle path goes through regions of high lateral-gradients in model 
M84C. The traces are all normalized to the maximum amplitude in the R ,  train and the 
seismograms are calculated using the source parameters of the centroid solution given in the 
PDE bulletins. In all cases, an attenuation factor has been included, according to model 

PREM SPHERICAL 

M84C WITHOUT COUFLING 

I GRADIENT TERMS K 2 . 

GRADIENT TERMS ‘X 4 

I how 
HONSHU PAF 0 5 / 2 6 / 6 3  

Figure 3. Example of vertical synthetic seismograms obtained by  normal mode summation (fundamental 
spheroidal mode only) for the path corresponding to the Honshu event of 1983 May 26 observed at 
GEOSCOPE station PAF. The source mechanism is the centroid solution of the PDE for this event and 
different earth models and formulations are used: (I), (2) - without including coupling terms; (3), (4), 
(5) - with coupling terms. In (4) and (9, spatial derivatives of the local frequency have been multiplied 
by  a factor with respect to model M84C. All traces are normalized to the maximum amplitude in R ,  . 
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PREM (Dziewonski & Anderson 1981). The top trace is the synthetic seismogram obtained 
by mode summation (fundamental mode only) for the case of the spherically symmetric 
earth model PREM. We note the steady decrease in amplitude from one train to the next 
due to physical dispersion and attenuation. The second trace is the synthetic seismogram 
obtained for model M84C of Woodhouse & Dziewonski (1984) but without including terms 
due to coupling. We note some effect on the phase in trains R 3  and R 4  but the amplitude 
envelope has not changed significantly as compared with trace 1. The third trace is obtained 
using M84C, including coupling terms with the formulation of equations (79) and (80). We 
note that the amplitude of R ,  is now as large as that of R 3  and R ,  tends to disappear. 
This effect is increased as we modify the earth model (somewhat arbitrarily) by multiplying 
the ‘gradient’ terms b, D, 2, E by two (trace 3 )  and by four (trace 4) with respect to the 
actual model M84C. Such an effect could not be obtained by using solely the formulation of 
Woodhouse & Dziewonski (1984), which yields only perturbations in the phase of the 
surface waves. 

Finally, in Fig. 4 we show an example of successful qualitative agreement of observed 
amplitude anomalies with synthetic ones. This example corresponds to the Chagos Islands 
event of 1983 November 30 observed at GEOSCOPE station TAM (Algeria). The top trace is 
the observed vertical seismogram, to which variable filtering has been applied in order to 
isolate the fundamental mode. A distinct amplitude anomaly is observed when comparing 

CHAGOS ISLANDS I I  / 3 0  / 8 3  

1 DATA AFTER V A R I A B L E  F l L T E A l N C  

1 P R E Y  SPHERICAL 

Y 8 4 C  WITH COUPLING 

~. 

Y E 4 C  GRADIENTS X 2 

~. 

I 
YBIC G R A D I E N T S  x 4 

- ----I; 
4 I I hour I 

Figure 4. Example of observed vertical seismogram, corresponding to the Chagos Island event of 1986 
November 30 observed a t  GEOSCOPE station TAM and compared to synthetics obtained by normal 
mode summation, as in Fig. 3. The fundamental spheroidal mode has been isolated on the observed trace 
by variable filtering. The source mechanism used in the synthetics is the CMTS solution of the PDE 
bulletin. 
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trains R ,  and R 3 .  Again, we present synthetic seismograms successively for a spherical earth 
model, Model M84C without coupling terms and with coupling terms, and finally a model 
derived from M84C by multiplying gradients by a factor 2 (and also 4) and taking coupling 
terms into account. We begin to see an amplitude anomaly for model M84C with coupling 
terms, and obtain reasonably good visual agreement with the data, when the gradients are 
multiplied by two. This is only a qualitative experiment, but suggests that amplitude 
anomalies can perhaps successfully be modelled using this approach. It also suggests that 
present global models underestimate gradients in lateral heterogeneity, which is not 
surprising, because of their smooth characteristics. 

Discussion 

We have calculated the contribution to normal mode amplitude and phase of coupling terms 
between neighbouring multiplets along a given dispersion branch, by an approximate 
method. This has enabled us to introduce effects of the odd part of lateral heterogeneity 
into the long-period seismograms calculated by normal-mode summation, and to reconcile, 
to the lowest order, the normal-mode approach with the propagating wave formulation in 
which the phase of successive wavetrains depends on the average phase velocity on the 
portion of great circle between the epicentre and the receiver. Without the coupling terms, 
the phase of surface waves obtained by normal-mode summation depended only on the great 
circle average phase velocity, an obviously incorrect result (Dahlen 1979). 

The approximation used involves asymptotic developments in terms of (Ill) of Legendre 
functions and integrals over the sphere calculated by the stationary phase method. We have 
seen that, to order zero in (l/Z), only a phase shift, as just described, is introduced. The 
formulation is then equivalent to that of Woodhouse & Dziewonski (1984), who guessed at 
the correct phase shift to reconcile normal mode and surface wave results. We note, however, 
that this formulation is valid only in the lowest-order asymptotic approximation to geo- 
metrical optics. Moreover, to recover amplitude perturbations such as those due to focusing 
effects along the source station path, we need to extend the asymptotic calculations up to 
order 1/1. When we do  so, we introduce an amplitude perturbation which is equivalent, to 
first order in the model perturbations, to that obtained using ray theory and a propagating 
wave approach (Woodhouse & Wong 1986). The focusing and defocusing of rays which 
produces these amplitude variations in the ray theoretical approach are here expressed 
through the dependence of normal-mode amplitude on the spatial derivatives of the local 
frequency, along the great circle, that is, on the structure in the vicinity of the great circle. 

With the approach considered here, we can now model effects of both even and odd 
lateral heterogeneity on phase and amplitude in long-period seismograms, by normal-mode 
summation, without having to calculate complete splitting matrix elements (especially 
coupling terms), and without any ray tracing. This formulation is therefore well suited for 
inversion, as we shall show in a forthcoming paper. 

This formulation is valid for large angular orders 1 and under the restriction that lateral 
heterogeneity is smooth (s,,, < 1, if s,,, is the maximum order of its spherical harmonics 
expansion). We note here that we have also assumed, in the course of our derivation, that we 
can, under these conditions, neglect perturbation terms arising from differences between the 
local frequencies and source radiation patterns of neighbouring multiplets of angular order 1 
and 1 + n, with In 1 < smax.  This conjecture remains to be proved, but is supported by the 
good agreement of our results with those obtained using a propagating wave approach in the 
high frequency limit where ray theory is applicable. 

We have presented the derivation developed for spheroidal modes observed on the vertical 
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component. I t  can be readily extended to horizontal components and toroidal modes in the 
same manner as was done for the higher order terms in the expression for the location 
parameter in Paper I. Also, the coupling effects due to the hydrostatic ellipticity of the earth 
can be calculated explicitly using known expressions for the corresponding elements of the 
splitting matrix (Woodhouse & Dahlen 1978), as well as for the rotation matrices for 
spherical harmonics (Edmonds 1960). 

We have not considered here effects of coupling with the Earth’s rotation, which concerns 
mainly low angular orders and has been addressed by other authors (e.g. Masters, Park & 
Gilbert 1983). Also, to obtain a complete asymptotic formulation for the first-order quasi 
degenerate splitting theory would require, in addition, inclusion of coupling terms between 
multiplets belonging to different dispersion branches that are close in frequency. These 
effects need to be attacked case by case and are beyond the scope of this study, as are 
effects due to anisotropy. 

Finally, we have not considered here any possible effects due to anelasticity, such as 
lateral variations in the quality factor, which should be included in any inversion process. 
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Appendix I 

Woodhouse (1980) gives an expression for the general term of the splitting matrix 
Z K K I  = H K K l  - u i P K K f  corresponding to the interaction of a mode K ‘  with mode K ,  when 
the eigenfrequency u k t  of mode K ’  in the reference spherically symmetric earth model is 
close to uk . 

h )  be the vector of perturbations to the initial spherically 
symmetric elastic model of the earth, then the spherical harmonic expansion of the 
perturbation is: 

Let 6m = { 6 ~ ,  6 p ,  6 p o ,  

6 p = 6 p e  +c 6p;Y;. . . , (1.1) 
s t  

where 6 ~ ( ~ , 6 ~ ~ ,  . . . , etc., are contributions from ellipticity. Then, setting aside 
contributions from ellipticity and rotation: 
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where W is the Wigner-2j symbol (Edmonds 1960): 

with expressions for K,,  Ms . . . as given in equations (A36)-(A42) of  Woodhouse (1980). 
Following the procedure of  Woodhouse & Girnius (1982), after some algebra, we can write 
2~~~ in the form: 

where M ( ’ )  ( r ) ,  H i L , ( r )  are summarized in Table I (for i = 0 )  and are given by known 
expressions in terms of scalar eigenfunctions of  the reference model for modes K and K ’. 

Similarly to Woodhouse & Girnius (1982), this leads to defining three local functionals 
6w(’) of  the Earth’s structure, such that: 

K K.  

k k ‘  
i = 2  ,.,. 

where: 
( - 0 2  iym* y m ‘  

Lm” = 1 )  1 I ’  

[21(1+ l ) 2 1 f ( l ’  + I ) ]  j’’ 
and 

6wzi,(O,@)= [21( /+  I ) X f ( l f  + (Joa 6m(r, 0 ,  @)) M$)K(r)r’ dr 

- C h(e,  4) (H$; .):. 
d 

Table 1 also gives, for cpmparison. the corresponding expressions for the case of the splitting 
matrix elements H P m  for a single mode K as given by Woodhouse & Dahlen (1978) and 
summarized in table I I  of  Woodhouse 8c Girnius ( 1982). 

The expressions M j f k s ( r )  contain imaginary parts, which, t o  order I / / .  will yield zero 
contributions. Thus we d o  not consider them here. 

Appendix I1 

AI ’ I ’ROXIMATION 01.‘ I N T I G R A L S  BY T H E  MI-THOI)  01; S T A T I O N A R Y  P H A S E  T O  

o I< 13 12, n I I 1 

Let 1 be an integral of  the form: 

I ( h )  = R(h, p) cos [kF(P)I dlz, r 
where k = 1 + 1 I?. and g is a slowly varying function of p. 

(11.1)  
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that F ' (po)  = 0, was derived in Paper I ,  Appendix I ,  and it is: 
The contribution to this integral from the neighbourhood of a stationary point p o ,  such 

aZF 
F" = ( P o )  

(11.3) 

The sign is plus or minus, according to the sign of F " ,  and h is a function of the 2nd, 3rd and 
4th derivatives of F with respect to p. In the case considered here, F is of the form: 

IT r n  
4 2 k  

kF(p) = kP - - + m - + - cot 0, 

where m and n are integers and (Fig. 1): 

cos = cos h cos A + sin h sin A cos p. 

Then: 

where 

(11.4) 

(11.5) 

(11.6) 

(11.7) 




