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S U M M A R Y  
In this study we present a new approach to inverting long-period seismic waveforms. 
The effect of lateral heterogeneity is partitioned into two. The first part represents 
the effect of horizontally averaged structure along the great circle between the 
source and receiver, and is allowed to remain in non-linear form in the formulation. 
The second part incorporates any further correction due to cross-branch modal 
coupling, which has been neglected in the more conventional path average ap- 
proximation (PAVA). This term is linearized and then treated asymptotically so that 
the seismogram depends only upon the structure within the great-circle section 
determined by the source and receiver (Li & Tanimoto 1993a). We refer to this new 
method as the non-linear asymptotic coupling theory (NACT). The sensitivity 
kernels predicted by the PAVA and NACT are compared. While the sensitivity 
kernels are similar for surface waves and shallow-turning body waves, they are very 
different for body waves that sample the deep mantle. By examining the inversion 
algorithms for the PAVA and NACT, we demonstrate that the computation time 
required by the NACT tends to be of the same order of magnitude as that required 
by the PAVA, as the number of model parameters increases. Based upon a 
realistically large data set (5041 body-wave seismograms and 1531 mantle-wave 
seismograms), formal resolution analyses are performed using both PAVA and 
NACT. We find that the NACT is significantly more powerful in resolving 3-D 
structure in the deep mantle. We compare the models obtained for the same 
observed data set using the two approaches. As expected, they differ more in the 
lower mantle than in the upper mantle. The difference in their amplitude spectra 
increases with spherical harmonic degree. The model developed using the NACT 
predicts the observed surface geoid better than that developed using the PAVA, 
based upon geodynamic flow modelling. 

Key words: Earth’s interior, inversion, mode coupling, seismic tomography, synthe- 
tic waveforms. 

1 INTRODUCTION 

Recent tomographic models of the Earth’s elastic structure 
rely primarily on either traveltime data of first-arriving 
phases collected by the International Seismological Centre 
(e.g. Inoue et al. 1990; Pulliam, Vasco & Johnson 1993) or 
waveforms of long-period surface and body waves (e.g. 
Tanimoto 1990; Woodward & Masters 1991a,b; Masters, 
Bolton & Shearer 1992; Zhang & Tanimoto 1993; 
Dziewonski et al. 1993; Su, Woodward & Dziewonski 1994). 
The advantages of using digital data of long-period waves, 
now that many broad-band stations are operating around 

the world, comes from the high quality of measurements, 
essentially free of the noise introduced by unchecked 
reading errors, and the possibility of better sampling the 
volume of the mantle through the inclusion of many later 
arriving phases. In addition, the error due to unmodelled 
small-scale structure should be smaller for long-period 
waves because of their longer wavelengths. The techniques 
used in many waveform studies are based on the so-called 
path average approximation (PAVA), under which the 
seismogram is sensitive only to the horizontally averaged 
structure along the great circle between the source and 
receiver. Such an approximation works fairly well for 
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surface waves, but IS inaccurate for body waves, because it 
fails to describe the concentration of sensitivity to structure 
in the vicinity of the ray path. An alternative approach has 
been developed (Woodward & Masters 1991a,b; Su & 
Dziewonski 1991), in which differential or absolute 
traveltimes of long-period body-wave phases are measured 
from waveforms and then interpreted in the framework of 
geometrical ray theory. Although the simplicity of this 
approach is very attractive in many ways, its limitations are 
obvious. Traveltimes are difficult to measure for overlapping 
phases, which are common for long-period waves and 
sample some important regions not reachable by well- 
isolated phases. In addition, the geometrical ray theory, 
which is accurate in the high-frequency limit, may be 
inadequate when applied to long-wavelength seismic waves. 
In the hope that the PAVA waveform fitting and the ray 
approach would be complementary to each other, 
Dziewonski & Woodward (1992), Woodward et af. (1993), 
and Su et al. (1994) combined the two methods and inverted 
waveforms and traveltime measurements of long-period 
seismic waves simultaneously. A more recent study (Liu, Su 
& Dziewonski 1994) demonstrates that the addition of 
SKS-S traveltime measurements can further improve the 
resolution at the bottom of the mantle. 

It is obvious that waveform inversions based upon more 
accurate theories are desirable. In principle, the exact 
solution to the equation of motion in a laterally 
heterogeneous earth model can be approached using the 
variational method or its equivalents. Significant progress in 
developing more efficient algorithms using these exact 
theories has been made (Hara, Tsuboi & Geller 1991, 1993; 
Geller & Hara 1993). At the same time, higher order 
perturbation theories have also been developed (e.g. Dahlen 
1987; LognonnC & Romanowicz 1990: Park 1990). 
Nevertheless, computations required by these approaches 
are still heavy for very large-scale inversions using current 
computational facilities. It is, therefore, useful to continue 
investigating asymptotic approaches. 

In this study we present a new approximate technique for 
waveform inversion, based upon a theoretical work by Li & 
Tanimoto (1 993a). Taking cross-branch coupling into 
account, the theory is able to bring out the ray character of 
body waves using normal-mode superposition. It represents 
a more accurate approach than the PAVA, while keeping 
the amount of computations relatively small. 

The original version of the modal couping theory pre- 
sented in LI & Tanimoto (1993a) involves the complete 
linearization of phase perturbation terms, an approximation 
which may not be valid beyond very short times. In this 
study, we introduce a method that overcomes this 
deficiency, at the cost of introducing non-linear terms in the 
theory and having to solve the inverse problem iteratively. 
We shall refer to this non -linear asymptotic coupling theory 
as NACT in this paper. 

We apply the NACT to the inversion of a data set 
consisting of approximately 5000 long-period SH body-wave 
and 1500 long-period S H  mantle-wave seismograms. The 
inversion result is compared with that obtained using the 
more conventional PAVA base upon the same data set. It 
has been demonstrated (Mochizuki 1986a; Park 1987; 
Romanowicz 1987) that the PAVA is equivalent to 
neglecting cross-branch modal coupling. Therefore the 

comparison of the PAVA and NACT shows how significant 
cross-branch coupling is in global waveform inversions. We 
shall restrict the scope of this paper to the comparison of the 
two inversion techniques and defer the discussion of 
geodynamical implications of our model to a separate 
publication. 

2 N O N - L I N E A R  ASYMPTOTIC COUPLING 
T H E O R Y  OF N O R M A L  MODES 

Based upon first-order perturbation theory for normal 
modes (e.g. Woodhouse 1983), Li & Tanimoto (1993a) 
developed an asymptotic formulation to calculate seismo- 
grams of long-period seismic waves. Eq. (18) of Li & 
Tanimoto (1993a), which was given in an incorrect index 
notation, should be written in a matrix notation, 

u(4)  = R exp ( iRt)S,  (1) 

where u ( z )  is a seismogram as a function of time z, the real 
part of the right side of the equation is understood, R and S 
are the receiver and source vectors, respectively, as defined 
in Woodhouse & Girnius (1982) with some convention 
differences (see Li & Tanimoto 1993a, for details), and the 
C? can be defined through its elements 

z, 
oi + w, 

R, = w,$ + 

In eq. (2) wi is the (complex) eigenfrequency of singlet i of 
the reference spherically symmetrical earth model (which 
degenerates to the same value for all singlets belonging to 
the same multiplet), I ,  are the elements of the identity 
matrix I, Z,  represent the effect of 3-D structure 
perturbation as defined in Li & Tanimoto (1993a). The 
matrix exponentiation needs to be evaluated through a 
power series 

(3 )  

In Li & Tanimoto (1993a) the non-linear dependence of 
seismogram u ( 7 )  on the structure effect Z ,  was directly 
linearized under the assumption that Z,,z are small, which is 
inaccurate especially for large T (Um, Dahlen & Park 1991). 
Here we present a method to improve the accuracy. Let us 
introduce apparent frequency shifts So, which are the same 
for all singlets belonging to the same multiplet and, 
generally speaking, are functionals of the source-receiver 
distribution and of the given 3-D earth model. We can then 
rewrite eq. (2): 

(4) 

(5) -TI 
EE GJ0 + 

w, + 0 1  

where 

G ,  = 0, + Sw,, 

and 

( 6 )  

(7 )  2, = z,, - 2o,Sw,I,. 

Following Woodhouse (1983), we may define So,, which is 
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where QL;),'. and QZ? are functionals of the source and 
receiver and are given in Appendix A,  j = l ' - l  is the 
difference between the angular degrees I '  and 1 (of multiplet 
k'  and k ,  respectively), and rp is the distance along the great 
circle. Sw;,. in eq. (13) may be calculated through 

the same for all the singlets belonging to  the same multiplet, 
as 

f?, 

where the absolute singlet indices i,j used above, which label 
all the singlets globally, have been switched t o  a multiplet 
index k and relative singlet indices m,m', which represent 
different singlets within a multiplet (thus singlet indices can 
be dropped for quantities which d o  not vary with singlets 
within a multiplet). However, we here elect to  calculate Sw, 
using the path average method, 

(9) 

where the integration is taken along the great-circle path 
from the source S to  receiyeTR, dcp denotes the incremental 
angular distance element, SR is the total length of the path, 
and 6~f,,~,,, is the local frequency introduced in Jordan 
(1978). The main advantage of eq. (9) is its numerical 
simplicity. The physical meaning of partitioning in eq. ( 5 )  is 
also very clear when eq. (9) is used: the first term on  the 
right side of eq. ( 5 )  implies that, t o  the first order, a 
seismogram in a laterally heterogeneous earth model can be 
calculated in the same way as in a spherically symmetric 
model using a 1-D theory, providing that the eigenfre- 
quencies 6, are evaluated for a model obtained by 
horizontal average along the great circle connecting the 
source and receiver; the second term represents any further 
correction, whose effect is presumably much smaller and can 
thus be linearized. This results in a better approximation 
than complete linearization of the total effect. Replacing wh 
by d, and Z,, by 2,,, we can go through the same procedure 
as in Li & Tanimoto (1993a) and obtain, after asymptotic 
approximation and some algebra, 

where the summation is taken over all the multiplets, 
A ,  = x,,, R:,St,, and 

with rk  being the set of multiplets whose eigenfrequencies 
oh, are higher than or equal to w,. In eq. (11) D,,, and E,,, 
are defined by 

where the limit d, + 6,. is understood for 6, = dkr,  and 
z x  E A k , = - [ Q ~ ~ z ~ ~  1 6w:k,cosjpdq 

2n 
r zx  

J(I I 

where a is the Earth's radius, 6rn represents the volumetric 
perturbations in earth structure (the vector notation 
represents possible multiple physical quantities, such as P 
and S velocities and density), and h,, is the undulation of the 
d t h  discontinuity. If anisotropy of earth structure is ignored, 
the kernels Mkk8 and H i , .  may be evaluated directly using 
eqs (A36)-(A42) of Woodhouse (1980) (where the case 
I" = 0 is required). When anisotropy is considered the 
expressions for M,,, and H:,, can be modified in a 
straightforward manner (Mochizuki 1986b; Tanimoto 1986b; 
Romanowicz & Snieder 1988; Li 1990). 

In summary, the non-linear asymptotic coupling theory 
(NACT), expressed in eq. (lo), states that a seismogram can 
be calculated in two parts: the first term on the right-hand 
side of eq. (1) is the exact result of the PAVA (see 
Tanimoto 1986a; for equivalence between the formulations 
of Tanimoto 1986a and Woodhouse & Dziewonski 1984, see 
Li & Tanimoto 1993b); the second term represents the 
cross-branch modal coupling effect ignored by the PAVA. 

3 C O M P A R I S O N  OF SENSITIVITY 
KERNELS P R E D I C T E D  B Y  T H E  P A V A  AND 
N A C T  

A natural question arises as  to  how significant the difference 
between the P A V A  and NACT is. In this section we 
attempt to  answer the question by comparing the sensitivity 
kernels predicted by the two theories. Following Li & 
Tanimoto (1993a) we define the sensitivity kernel M of a 
seismogram through 

where 4 u  is the perturbation seismogram contributed from a 
volumetric perturbation Sm, which is sampled by the 
sensitivity kernel M, the surface integration is over the 
whole area S of the great-circle section (dA = r d q d r ) .  A 
sensitivity kernel predicts the regions that a particular 
seismic phase, arriving at the receiver at time z, has sampled 
along its path. 

A s  an example, a synthetic SH seismogram at epicentral 
distance 4 = 110" of a hypothetical earthquake with a source 
depth of 35 km is calculated using a spherically symmetric 
earth model (PREM of Dziewonski & Anderson 1981) and 
is plotted in Fig. 1, where phases S,,t, SS and C are also 
indicated. The seismogram is calculated using the modal 
superposition technique (Gilbert & Dziewonski 1975), which 
is equivalent to  the first term on the right-hand side of 
eq. (10) with d, = w,. Our  aim here is to compare the 
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Figure 1. An S H  synthetic seismogram at epicentral distance A = 110". The seismogram is calculated for a spherically symmetric reference 
model (PREM of Dziewonski & Anderson 1981) and low-pass filtered with a cut-off frequencyf = 1/32 Hz and a corner frequencyf = 1/38 Hz. 
The Sdl,, SS, and G phases are indicated. The time-scale is in seconds. 

sensitivity of the seismograms to structure perturbation as 
predicted by the two theories. For SH seismograms, we 
assume that they are sensitive only to S-velocity 
perturbation, and the sensitivity kernel M thus reduces to a 
scalar function M .  In Fig. 2 are shown the sensitivity kernels 
predicted by the PAVA and NACT for G (top), SS 
(middle), and (bottom) phases. The sensitivity kernels in 
the left-hand column are calculated using the PAVA and 
those in the right-hand column are calculated using the 
NACT. From visual inspection of these kernels, the two 
theories predict similar sensitivity kernels for surface waves 
but very different ones for body waves. If we measure the 
difference between the kernel Mp predicted by the PAVA 
and the kernel MN calculated using the NACT by the 
quantity 

f (Mp - MN)' dA 
J S  

v=JpqiG1 
where the integrations are over the area of the great-circle 
section, we obtain V = 6, 103 and 197 per cent for G, SS, 
SdiP respectively. The deviation of the two approaches 
becomes more severe as the wave penetrates deeper into the 
mantle. 

On the other hand, the difference between the NACT and 
geometrical ray theory is also clear from Fig. 2. First, the 
NACT predicts finite-width Fresnel zones associated with 
body-wave propagation. Secondly, the kernels from the 
NACT indicate a non-uniform sensitivity distribution along 
the ray path. The sensitivity concentrates at the source and 
receiver regions and at the bouncing point for SS or 
diffraction region for Sdiy Such concentrations at the source 
and receiver regions are also shown in independent studies 
(e.g. Stark & Nikolayev 1993). In particular, the sensitivity 
concentration near the Earth's surface has the important 

consequence that the crustal structure has a stronger effect 
on body-wave seismograms than predicted by the PAVA 
approach and the geometrical ray theory. 

4 INVERSION ALGORITHMS 

Since the coupling between multiplets is taken into account 
in the NACT formulation (see the double summation in the 
second term on the right-hand side of eq. ll), the 
computation time seems, at first glance, to be forbiddingly 
expensive for large-dimension inverse problems. However, 
we shall show in this section that if spherical harmonics are 
used to expand the earth model, coupling will be limited 
only to those multiplets whose angular degrees satisfy a 
certain selection rule. We will further demonstrate that the 
computation times required by the two approaches, the 
NACT and PAVA, are asymptotically the same, as the 
maximum spherical harmonic degree of lateral hetero- 
geneity increases. 

We note that in both the PAVA and NACT, a 
seismogram depends only upon the structure within the 
great-circle section containing the source and receiver. For a 
given combination of the source and receiver, we may define 
'great-circle coordinates' (6, cp) in such a way that the 
source is located at 6 = 7 ~ / 2  and cp = 0 and the receiver is 
located at 6 =  z/2 and c p = A  with A<n (asymptotic 
theories like the PAVA and NACT break down at A = O  
and A = a, where caustics of travelling waves occur). Within 
the great circle (the equator of the great-circle coordinates), 
we may express a 3-D model Sm in terms of Fourier series, 
{cos hcp, sin hcp}, and certain radial basis functions f,(r) 
(again, the vector notation represents possible multiple 
physical quantities), 

Sm(,9,,,2 = (uz coshq + bz sin hcp)f,(r), 
q h  
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Figure 2. Sensitivity kernels of the seismogram shown in Fig. 1. The earthquake hypocentre is represented by stars and the station is 
represented by triangles. The geometrical rays shown as thin curves are calculated using the geometrical ray theory. The kernels are for the G 
(top), SS (middle), and Sd,, (bottom) phases. The kernels shown on the left are calculated using the PAVA and the ones shown on the right are 
calculated using the NACT. The graphic contour intervals are 4:2:1 from the top down. 

where coefficients a; and hz characterize the model. Using 
eqs (10)-(14) and (17), we can express a seismogram in 
terms of model coefficients a: and bz, 

where rkh denotes the set of multiplets k' that have 
reference eigenfrequency w k 2  2 wk and angular degree 1' 
satisfying ) I f -  I /  = h, and coefficients AZkf and BZk, are 
given in Appendix B. Now we can see that the summation 
over k' in eq. (11) is taken over all the multiplets with 
reference frequencies w k r  zw, ,  while in eq. (18) the 
summation is only over those that satisfy the additional 
selection rules 11' - /I = h, resulting from orthogonality of 
sine and cosine functions. 

An explicit relationship between the apparent frequency 

shift 60, and coefficients a: and bz can be obtained from 
eqs (9), (14) and (17), 

2w,sw, = 2 MI,(ag - (-l)n 
Y 

-'OS h A b f ) l ,  (19) 
SR h 

where n is the orbit number of the wave packet (for 
common minor-arc body-wave phases n =I) ,  M I ,  are 
given in Appendix B, and SR is given by 

A 

- ( n - l ) n + A ,  i f n = 1 , 3 , 5  , . . .  
if n = 2, 4, 6, . . . S R = [  nn - A, (20) 

Thus eqs (18) and (19) provide an algorithm for calculating 
a synthetic seismogram from model parameters a; and bz. 
The partial derivatives of a seismogram with respect to 
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parameters a: and bz can be readily derived: 

and 

(22) 

where d6wk/i)a4 and dSw,/dbz are obtainable from eq. (19) 
and 

with UkkZ and Vkk, being given in Appendix B. We note that 
in eq. (21), and similarly in eq. (22), the first term 
corresponds to the PAVA; the second term alone is the 
result of the linear asymptotic coupling theory of Li & 
Tanimoto ( 1993a). 

Although a single seismogram is sensitive to, and hence 
constrains, only the structure within the great-circle section, 
we can model 3-D structure using many seismograms, which 
sample different great-circle sections. Let us expand a 3-D 
earth model 6m in terms of spherical harmonics Y,:(8, 4)  
(Edmonds 1960), where 8 and I$ are the geographic 
coordinates, and the radial basis functions fy(r): 

(24) 

where c,ly are coefficients to be determined, we truncate the 
spherial harmonic expansion at a finite angular degree s,,,, 
and the dimension of the radial basis functions is also finite. 
It can be demonstrated that the 'great-circle parameters' a; 
and 6: are related to the 'global parameters' csrY through 

\=/I I = - \  
s + h  C V C ~  

and 

t = h  I = - (  

,+ I*  c \ e n  

where a:i and are, for a given source-receiver 
distribution, constant and can be readily calculated using the 
transformation property of spherical harmonics under the 
rotation of the coordinate frame (Edmonds 1960). Thus eqs 
( 2 5 )  and (26), together with eqs (18) and (19), give a recipe 
for calculating seismograms from c , , ~ .  For inverse problems, 
the partial derivatives of a seismogram u with respect to cTlY 

can be obtained using the chain rule of differentiation: 

s+h even 

Now let us examine the number of operations involved in 
inversions using the PAVA and NACT, as a function of 
smax. Both theories are non-linear and need to be solved 
iteratively. Within each iteration, computations are mainly 
used in three steps: 

(1) calculating the synthetic seismograms and partial 
derivatives with respect to a; and bz; 

(2) constructing the partial derivatives with respect to 

(3) solving the linearized least-squares problem. 
csty; and 

The difference between the PAVA and NACT exists only in 
the first step. In the first step, the computations required by 
the PAVA depend upon s,,, only through the fact that the 
total number of partial derivatives a; and bx increases with 
smaX. Since au/dax and &lab; need to be calculated for all 
h =0,  1 , .  . . , smax (see eq. 27), the computation time 
required by the PAVA in the first step is proportional to 
s,,,. For the NACT, the computations for each term of 
du/da,Y and duldbx are proportional to smax, because of the 
summations over h' in eqs (21) and (22). Thus the total 
computations required by the NACT in the first step are 
proportional to s,?,,,~. The second step involves the 
evaluation of eq. (27). For a given s, the computation time is 
proportional to sz since -s 5 f 5 s  and h 5s. The total 
computation time is, therefore, proportional to (2:,"'2; s2) -+ 
sia,. The computations required in the third step also 
increase faster than skaX, as in the first step. For example, if 
we solve the linearized least-squares problem by using the 
normal equations, the computations needed in constructing 
the inner product matrix (often known as ATA matrix in the 
literature) increase as s:,,. For the inversion experiments 
performed in this study, where s,,, is set to 8, 
approximately 70 per cent of the total computation time 
used in the NACT approach is consumed in the first step 
due to the modal superposition. As the desired resolution is 
to be improved (increasing s,,,), however, the computation 
time will eventually be dominated by that consumed in the 
second and third steps, which are the same for the PAVA 
and NACT. 

5 D A T A  SET A N D  MODEL 
PARAMETRIZATION 

We have collected and processed more than 5000 SH 
seismograms of 343 earthquakes occurring between 1977 
and 1991 recorded at 79 seismographic stations of 
GDSN/IRIS, GEOSCOPE, CDSN, and RSTN networks 
with epicentral distance between 15" and 165". After 
discarding the data that either are too noisy, or have 
apparent instrument calibration or timing problems, we use 
5041 long-period body-wave records and 1531 long-period 
mantle-wave records in this study. The data are low-pass 
filtered with a cut-off frequency 1/32 Hz for body waves and 
1/80 Hz for surface waves. We manually select windows in 
the time domain (see Fig. 3) so that we can use only those 
portions of data that are associated with major energy 
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Figure 3. (a) Low-pass filtered (f < 1/32 Hz) SH body-wave seismogram of 1988 January 19 Chile earthquake recorded at GEOSCOPE station 
CAN. (b) Low-pass filtered (f < 1/80 Hz) SH mantle-wave seismogram of 1987 April 22 Japan earthquake recorded at GDSN station GRFO. 
In both cases the observed seismogram is plotted on the top trace, and the synthetic seismogram calculated from the spherical reference model 
PREM (Dziewonski & Anderson 1981) is plotted on the bottom trace for reference. Only the data within the indicated windows are used in the 
inversions. The time-scales are in seconds. 

arrivals. Obviously this leads to large savings in computation smaller amplitude. However, information carried by the Sdjf 
compared with the case in which the whole wave train is phase may be more valuable, considering that the phase 
used, as in previous studies. Another purpose of windowing samples the bottom of the mantle, which fewer waves reach. 
is that it gives us flexibility on how to weight different phases The windowing scheme here enables us to assign weights to 
in the inversion. For example, if we fit the whole wave train different phases more appropriately. 
in Fig. 3(a) as a block, the Sdif phase will receive a smaller We parametrize the model by expanding relative 
weight in the inversion relative to the SS phase, due to its S-velocity perturbations in terms of spherical harmonics YSr 
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(Edmonds 1960) for the horizontal dependencies and 
Legendre polynomials f ,  for the radial dependency: 

"S \ '  I s = o  /=--( y=o 

where 6u, is the perturbation in S-velocity, u S ( r )  is the 
spherical average S-velocity evaluated at the reference 
model PREM (Dziewonski & Anderson 1981), r is the 
radius, 8 is the colatitude, 4 is the longitude, x is the 
reduced normalized radius (Dziewonski 1984; Woodhouse & 
Dziewonski 1984), and c , ~ ,  are coefficients to be determined. 
For the present experiments, the spherical harmonic 
expansion is truncated at degree s,,, = 8 and the 
polynomial expansion is up to degree 9,,, = 5 for the upper 
mantle and up to degree 9,,, = 7 for the lower mantle. Thus 
the total number of unknown coefficients csr, is 1134. 
Although alternative basis functions may be chosen for the 
radial dependency (for example Woodward et al. (1993) 
used Chebyshev polynomials as their basis functions), the 
choice of basis functions should not have large effects on the 
comparison of the two inversion approaches studied here. 

In the following sections we will show results of resolution 
analyses and inversions of observed data using the PAVA 
and NACT, based upon the same weighting scheme and 
model parametrization as described above. Since weighting 
schemes and model parametrization are also crucial for 
inverse problems, we expect that the models developed 
using the two approaches, respectively, may be similar to 
each other in the context of the comparison with some other 
models found in the literature, which are developed using 
different weighting schemes and model parametrizations in 
addition to different data and forward theories. On the other 
hand, the difference between the results using the PAVA 
and NACT should be purely due to the difference in the 
theories used. 

6 COMPARISON OF FORMAL 
RESOLUTION RESULTS FROM THE P A V A  
A N D  NACT 

Since both the PAVA and NACT are non-linear in terms of 
the relationship between the model and data, the inverse 
problem has to be solved iteratively. As for formal 
resolution, however, we choose to perform conventional 
linear analysis, which may be viewed as investigating to what 
extent a small perturbation to the final, converged model 
can be recovered. 

For any small model perturbation m, we can express the 
corresponding data perturbation d by a linear relationship 

d = Am, (29) 
where A is the partial-derivative matrix. Using the synthetic 
data, we may infer an output model mou, by inversion: 

mout = G( 7) )d, (30) 

where G(7)  is an inversion matrix with the parameter 7 
representing the characteristics of the a priori data and 
model variance. For example, G ( q )  = (ATA + vl)-'AT is a 
classical damped least-squares inversion matrix and 7) in this 
case is the damping parameter. Substituting eq. (29) into eq. 

(30),  we obtain 

mout = G( q)Amin, (31) 

where G(7)A is called the resolution matrix (Aki & 
Richards 1980), which depends upon three factors: the 
dimension and distribution of the data, the theory that 
governs the calculation of the partial-derivative matrix A, 
and the a priori information on the data and model variance. 
Eq. (31) suggests an approach to investigate the resolution 
of inversion by comparing the output model mou, with a 
given input model mi,. We shall present the results of two 
parallel experiments using two different theories, the PAVA 
and NACT, while keeping the data dimension and 
distribution and parameter 7) fixed. 

In the resolution analyses we simulate the data 
distribution described in the previous section and use the 
same damping parameter 7 as used in inverting the 
observed data (see next section). We choose the input 
model to have a checker-board-looking horizontal pattern, 
obtained using a spherical harmonic degree 8 and order 4 
components. The amplitude varies vertically, with sign 
changes occurring at some depths, as shown in Fig. 4. 

Shown in Fig. 5 are vertical cross-section views of the 
output models using the PAVA (a) and NACT (b). 
Generally speaking, the resolution decays with depth in both 
cases due to the fact that fewer phases sample deeper 
structure. In the lower mantle the result using the NACT is 
significantly better than that using the PAVA. The 
amplitude of the former is larger and closer to that of the 
input model. While the model using the PAVA totally fails 
to recover the bottom layer (-300 km thick) of the input 
model, the success of NACT is very encouraging. In Fig. 6, 
maps of the two output models are shown at three depths: 
250, 2000, and 2750 km. At a depth of 250 km, the patterns 
of both models are almost the same as that of the input 
model, with the amplitude somewhat decayed (by 
approximately 30 per cent) due to damping. The advantage 
of NACT becomes obvious at a depth of 2000km. At a 
depth of 2750 km, the PAVA is unable to resolve the input 
structure at all; in contrast, the NACT can still reveal the 
pattern of the input model very well. Considering that the 
wavelength of the body waves used here is a few hundreds 
of kilometres and that the input model varies vertically very 
rapidly in this region, the deviation between the input and 
output models is expected for any technique. 

Finally, we wish to point out that an excellent result of 
formal resolution analysis does not prove the reliability of 
the inversion result, for it is possible to achieve good results 
in formal resolution analysis with an incorrect forward 
theory. However, if one theory fails in resolution tests while 
a more accurate theory performs better, problems exist with 
the former. 

7 DIFFERENCE IN INVERSION RESULTS 
OBTAINED USING THE P A V A  A N D  NACT 

The inversions are performed using the standard damped 
least-squares method with an a priori starting model in 
which the hydrostatic ellipticity and crustal thickness are 
added to the spherically symmetric model PREM (Dziew- 
onski & Anderson 1981). The damping level is determined 
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Figure 4. (a) A map view of an input model used in resolution analyses. The model has the same horizontal pattern at all the depths, bbt the 
amplitude and sign vary vertically. (b) A vertical cross-section view of the input model, cut at the equator of the Earth. 
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A measure of the difference between the two models is 
given by 

where c:q and czq are the cSrq coefficients (see eq. 28) of 
models NACT and PAVA, respectively. The D value is 31 
per cent for the upper mantle and 55 per cent for the lower 
mantle. The difference between the two models is large. We 
believe that the reason for the better agreement in the upper 
mantle is twofold: 

(1) the two theories differ less in the upper mantle, as 
sensitivity kernels suggest; 

(2) the data coverage is better in the upper mantle, which 
could reduce the bias caused by horizontal averaging of the 
PAVA method. 

This increase in difference between models PAVA and 
NACT as a function of depth is also shown in Fig. 7 ,  in 
which the rms lateral heterogeneity as a function of depth is 
plotted for models PAVA and NACT and the differential 
model DIFF (model NACT minus model PAVA). At the 
shallow depths, the rms of model DIFF is smaller than those 
of PAVA and NACT, while in the deep mantle it is as large 
as those of PAVA and NACT. 

It is also of interest to look at the spherical harmonic 
spectra of the differential model DIFF. The spherical 
harmonic (rms amplitude) spectrum C as a function of 
angular degree s is defined by 

Figure 5. (a) A vertical cross-section view of the output model 
obtained using the PAVA. (b)  A vertical cross-section view of the 
output model obtained using the NACT. For perfect resolution they 
would look the same as Fig. 4(b). 

empirically to balance the trade-off between the data and 
model variance. The correction for crustal thickness is done 
in the same manner as in Woodhouse & Dziewonski (1984) 
with the exception that we replace the ocean-continent 
distribution by more realistic topographic data (Y. Ricard, 
personal communication). In the calculation of the partial 
derivative and synthetic seismograms, the PAVA and 
NACT are used in parallel and two models (model PAVA 
and model NACT, respectively) are developed. 

The spectra of model DIFF are shown in Fig. 8 for the 
upper and lower mantles separately, along with the spectra 
of models PAVA and NACT. The amplitude of model 
DIFF increases with spherical harmonic degree. This is not 
surprising, since the bias due to the averaging operation by 
the PAVA should be more severe for higher degree 
structure. 

Finally, it is interesting to see how the two models are 
correlated with some independent geophysical observations. 
One of the most important surface observations, which 
reflects the Earth's interior physical properties, is non- 
hydrostatic geoid. According to the geodynamic theory of 
Richards & Hager (1984), the geoid g(8,+) may be 
expressed, in a first-order approximation, as a function of 
the 3-D distribution of density anomaly Sp(r ,8 ,  4) and 
spherical average viscosity ~ ( r ) :  

As an approximation we assume that the density anomaly 
can be obtained from 

(35)  

where c ( r )  is a scaling factor, p ( r )  and vs(r )  are the density 
and S-velocity of a spherical reference model (PREM of 
Dziewonski & Anderson 1981), respectively, and 
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Figure 6. Maps of output models at depths of 250 km (top), 2000 km (middle) and 2750 km (bottom). The maps shown in the left-hand column 
are obtained using the PAVA and those shown in the right-hand column arc the results from the NACT. The scales arc normalized .for each 
depth so that for perfect resolution, a map would look the same as the one in Fig. 4(a), with the exception that the contour interval of the map 
for the PAVA at 2750 km (left bottom) is half of that described here. 

Su,(r, 8, 4) is inferred from seismic data. Our knowledge on 
v(r) and c ( r )  is poor. Among others, Corrieu, Ricard & 
Froidevaux (1994) have developed a procedure to infer the 
viscosity distribution v(r)  and the scaling factor c ( r )  by 
optimizing the fit of the synthetic geoid to the observations. 
Since the observed geoid has a structure dominated by 
spherical harmonic degrees 2 and 3 (87 per cent of the total 
power between degrees 2 and 8 is from degrees 2 and 3), the 
distributions v ( r )  and c(r )  inferred in this manner are 
constrained very largely by the degree 2 and 3 structure of 
the seismic model. The synthetic geoid of higher degrees 
(degrees 4-8) obtained using these v ( r )  and ~ ( r )  can, 
there€ore, be used as means of assessing the seismic models. 
Using a program modified from the one by Corrieu et al. 
(1994) and assuming whole-mantle convection, we obtain 

the optimized v ( r )  and c ( r )  for models PAVA and NACT. 
The results are shown in Fig. 9. The two models yield similar 
v(r)  and c ( r )  and can predict good variance reductions in 
fitting the total geoid field (76.0 per cent from PAVA and 
78.5 per cent from NACT). This reflects the fact that the 
two models are very similar in their very low-degree 
structure. However, if we look at higher degrees, the 
difference between the two models shows up. In Fig. 10, the 
correlation coefficients between the synthetic and observed 
geoid are demonstrated for each degree. The synthetic geoid 
predicted by model NACT correlates with the observed 
better in degrees 4, 5,  and 7 than that predicted by model 
PAVA. For degree 6, both models predict excellent 
correlation coefficients. The failures for degree 8 of both 
models might be associated with the truncation of spherical 
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Figure 7. The vertical distributions of rms lateral heterogeneity o f  
model NACT (dashed curve). model PAVA (dotted curve), and the 
differential model (model NACT minus model PAVA, solid curve). 
The spiky peaks. with widths of approximately 80 km, at the 670 km 
discontinuity can be attributed to the so-called edge effect of 
Legendre polvnomials (c.g. Dziewonski tf ( I / .  1993). 

harmonic expansion at that degree. Nevertheless, the 
experiment shown here indicates clearly that model NACT 
predicts the geoid significantly better than model PAVA. 

8 CONCLUSIONS 

The traditional waveform inversion technique, PAVA, has 
been used widely in global seismic tomography. In this study 
we have presented a new inversion technique, NACT, based 
upon a more accurate asymptotic theory, which is able to 
bring out the ray character of body waves by taking 
cross-branch modal coupling into account. We have 
demonstrated that the new technique has higher resolution 
power. From a given data set of reasonable size, two models 
are inferred using the traditional PAVA and the new 
NACT, respectively. The results are significantly different 
and the one obtained using the NACT can predict the 
surface geoid, an independent observation, better than that 
obtained using the PAVA. The increase in computation 
time associated with replacing the PAVA by the NACT is 
manageable. In addition, the relative difference in 
computation time decreases as more model parameters are 
introduced. 

Based upon the advantage of the NACT as  shown in this 
studv. we are very optimistic that the new technique has 
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Figure 8. The amplitude spectra of model NACT (dashed curve), 
model PAVA (dotted curve), and the differential model (model 
NACT minus model PAVA, solid curve) in the upper and lower 
mantles. 

great power for developing more reliable, higher resolution 
models. We are working on applying this technique to  a data 
set larger than the one used here and a model of higher 
resolution will be available shortly, for which the level of 
horizontal detail will make it directly comparable with 
recently published whole-mantle models (Masters et at. 1992; 
Su et al. 1994). The next challenge will be to  incorporate 
off-great-circle effects, which can be modelled using higher 
order asymptotics (Park 1987; Romanowicz 1987). Modell- 
ing amplitude anomalies caused by elastic focusing of waves 
due to  off-great-circle structure is very important in 
retrieving anelastic mantle structure (e.g. Romanowicz 1990, 
1994; Durek, Ritzwoller & Woodhouse 1993). 
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where A = I  + 112 and R,, and Sk2,+, are defined in eqs (26) 
and (27) in Li & Tanimoto (1993a), we may express QYi,’. 
and QE? in eq. (13) as 

QY;. = (1 - Zkkr/2)[Pyk)- + Pi’,L], (A51 

and 

where 

APPENDIX B 

Both coefficients AZkr and BZ,, in eq. (18) may be factorized 
into three factors: 

= h ’ f & ~ u k k ~ D k k ~ ( T ~  Gk, Gk , ) ,  (B1) 

(B2) 

and 

BZk’ = M Z k , V k k ~ D k k z ( ~ ;  G , ,  G,,), 

where 

MZk8 = Mkk, ( r )  fqr2 dr (B3) 6 
depend only upon the reference spherical earth model and 
the choice of basis functions f , .  u k k r  and v k k r  are 
time-independent coefficients describing the source and 
receiver effects and can be given in terms of Qci’,’. and QZ),”,’. 
(see eqs A5 and A6) as 

where ] = I‘ - I is the difference between the angular degrees 
of multiplets k’ and k. Dkkr are given in eq. (12). 


