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SUMMARY
The spectra of 25 inner-core-sensitive normal modes observed following eight recent
major (Mw >7.5) earthquakes are inverted for anisotropic structure in the inner core,
using a one-step inversion procedure. The mode data are combined with PKP(DF)^
PKP(AB) di¡erential traveltime data and the inner core is parametrized in terms of
general axisymmetric anisotropy, allowing structure beyond restrictive transversely
isotropic models with radially varying strength. The models obtained are in good
agreement with previous ones derived through the intermediate step of computing
splitting functions. Splitting functions predicted for the inner core model determined
using the one-step, direct inversion of all mode spectra agree well with those obtained
from non-linear inversion of individual modes. We discuss the importance of handling
the perturbation to radial isotropic structure appropriately in order to align the
observed and predicted spectra properly. We examine the e¡ect of using existing
tomographic mantle models to correct for mantle e¡ects on the inner core modes versus
a mantle model derived by us using a relatively small number of mantle-sensitive modes,
and show that the latter leads to a signi¢cantly better ¢t to the inner core data. Our
ability to ¢t the inner core spectral data degrades appreciably if an isotropic layer
thicker than 100^200 km is imposed at the top of the inner core.
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INTRODUCTION

Normal mode spectra have been used extensively to constrain
long-wavelength three-dimensional structure in the Earth's
mantle as well as anisotropy in the inner core (e.g.Woodhouse
et al. 1986; Ritzwoller et al. 1986, 1988; Smith & Masters 1989;
Li et al. 1991; Widmer et al. 1992; Tromp 1995a; Romanowicz
et al. 1996).
The spectra of modes sensitive only to mantle structure

are rather well explained by existing models of elastic hetero-
geneity based on surface wave and body wave data (e.g. Smith
& Masters 1989; Li et al. 1991; He & Tromp 1996). In contrast,
modes with inner core sensitivity often exhibit splitting, after
correction for ellipticity and rotation e¡ects, which signi¢-
cantly exceeds that predicted by mantle models (e.g. Masters
& Gilbert 1981; Giardini et al. 1988; Widmer et al. 1992). This
splitting cannot be explained by reasonable isotropic hetero-
geneity in the mantle or core (e.g. Widmer et al. 1992), but has
been shown to be consistent with simple axisymmetric models
of anisotropy (e.g. Woodhouse et al. 1986; Tromp 1993). The

dominance of zonal structure observed in these modes is, to a
¢rst approximation, well described by transverse isotropy with
a symmetry axis parallel to the Earth's rotation axis, as are
PKIKP traveltime observations, for which paths parallel to
the rotation axis are systematically faster than equatorial
paths (Poupinet et al. 1983; Morelli et al. 1986). More recent
studies demonstrate complexities in the inner core anisotropic
structure beyond simple transverse isotropy (Li et al. 1991;
Su & Dziewonski 1995; Romanowicz et al. 1996; Creager 1997;
Souriau & Romanowicz 1997; Tanaka & Hamaguchi 1997).
The occurrence of several major earthquakes since 1994

has provided numerous high-quality digital data owing to the
recent global expansion of broad-band digital seismic net-
works. These data essentially supersede previous normal mode
data sets acquired over the last 20 years, and may be used to
improve constraints on inner core structure. Using such data,
Tromp (1995a) con¢rmed that a radially varying model of
transverse isotropy with a constant axis direction is able to
explain a signi¢cant fraction of the inner core mode splitting.
Romanowicz et al. (1996) inverted the splitting functions of 19
inner-core-sensitive modes for axisymmetric models of aniso-
tropy, thus allowing a departure from the radially symmetrical,
constant-direction transversely isotropic models commonly
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investigated. One of the main results of their study is that,
when relaxing the constraint of radial symmetry, models are
obtained in which the region of fast velocities experienced by
polar-parallel P waves in the centre of the core is elongated
in the direction of the rotation axis. Romanowicz et al. (1996)
also demonstrated that this class of structure predicts the
character of the scatter in traveltime data seen by Song &
Helmberger (1995) and is suggestive of long-wavelength con-
vection in the inner core, with £ow alignment of hcp-iron
crystals as a proposed source for the anisotropy.
Previous normal mode studies investigated the e¡ect of

heterogeneity on observed spectra using a two-step procedure
in which data for each mode are ¢rst inverted for a `splitting
function', describing the depth-averaged e¡ect of lateral hetero-
geneity in a manner similar to 2-D phase velocity maps in the
case of surface waves (e.g. Woodhouse et al. 1986; Ritzwoller
et al. 1988; Giardini et al. 1988; Li et al. 1991; Resovsky &
Ritzwoller 1995, 1998; He & Tromp 1996; Romanowicz et al.
1996). The splitting functions for a collection of modes, each
with di¡erent depth sensitivity, are then inverted jointly in a
linear inversion for 3-D elastic and/or anisotropic structure.
(e.g. Woodhouse et al. 1986; Ritzwoller et al. 1988; Li et al.
1991; Tromp 1993; Romanowicz et al. 1996).
The drawback of the two-step inversion for inner core aniso-

tropy is that the splitting functions inferred for inner-core-
sensitive modes depend on the starting model (e.g. Megnin &
Romanowicz 1995). The splitting functions thus obtained for
each mode may not always be consistent with realistic earth
structure (see Li et al. 1991 for a discussion).
The success of the two-step inversion is dependent on the

uniqueness of the intermediate splitting functions. To avoid
potential model errors introduced by non-unique splitting
functions, we here perform a direct inversion of the spectra
of inner-core-sensitive modes, an approach ¢rst introduced by
Li et al. (1991) and later applied by Tromp (1996) to mantle-
sensitive modes. We consider di¡erent parametrizations for
inner core anisotropy, and di¡erent ways to correct for mantle
e¡ects. For comparison, from the models thus obtained we
compute synthetic splitting functions for these modes and
discuss their consistency with splitting functions derived from
the data.

THEORETICAL BACKGROUND

In this section, we review the basic theory relating observed
spectra of an isolated multiplet to departures from a 1-D
reference earth model (PREM; Dziewonski & Anderson 1981).
While it is possible also to consider coupled modes (Resovsky
& Ritzwoller 1995, 1998; Tromp 1996; Kuo et al. 1997), we here
consider only the theoretical behaviour of isolated modes. The
displacement eigenfunction for a given singlet m in a multiplet
of angular order l can be written (Gilbert & Dziewonski 1975)

numl (h, �)~Ul
n(r)Y

m
l (h, �)zVl

n(r)+hYm
l (h, �) (spheroidal) (1)

~Wl
n(r)+h|Ym

l (h, �) (toroidal) ,

where n denotes the radial order of the mode, l de¢nes the
angular order, and {l < m < l de¢nes the azimuthal order.
In the spherical reference earth model, the 2lz1 singlets of a
multiplet all oscillate at the same frequency.

We represent the internal structure of the earth using lateral
and radial basis functions:

dm(r, h, �)~
X
s,t,k

dmk
stPk(r)Yt

s (h, �) , (2)

where dm~(da/a, db/b, do/o) represents perturbations to P
velocity, S velocity and density, respectively. Using ¢rst-order
degenerate perturbation theory, appropriate in the case of
isolated multiplets (Dahlen 1969; Woodhouse & Dahlen 1978),
the displacement corresponding to a single multiplet of order l
can be written in matrix form:

u(t)~Refexp (iut)r . exp (iHt) . sg , (3)

where r and s are the source and receiver vectors of dimension
2lz1 that describe the excitation and receiver response of the
individual singlets. For this discussion, we ignore the ellipticity
and rotation terms, which can be accurately computed (e.g.
Dahlen 1968). The e¡ect of heterogeneity on the observed
spectra is then fully described by the splitting matrix H, which
describes the interaction of two singlets, m and m':

Hmm'~uo

Xs~2l

s~0

Xt~zs

t~{s

cmm't
ls cts , (4)

where c is expressed in terms of 3-j symbols and includes
selection rules for singlet interaction through a component of
structure, (s, t). The splitting coe¤cients, cts, are linearly related
to the perturbation in structure as follows (Woodhouse et al.
1986):

cts~
�a
0

X
k

dmk
stPk(r)Ms(r) drz

X
d

dhsstH
d
s , (5)

where the radial sensitivities,Ms(r), to perturbations in velocity
and density are given by Li et al. (1991).
Following Li et al. (1991), the splitting matrix for an

anisotropic medium may in turn be written as

Hmm'~
1

2u0

�
[+um'5L(r, h, �)5+um1 ] dV , (6)

where L is the fourth-rank elastic tensor with 21 independent
components and um is the displacement eigenfunction for the
mth singlet. The fourth-rank elastic tensor may be expanded in
generalized spherical harmonics:

L~
X
abcd

X?
s~0

Xzs

t~{s

Labcd
st YNt

s eaebeced , (7)

where Lst(r) are the (radially varying) coe¤cients of the
expansion N~azbzczd, where a, b, c, d take the values
{1, 0, 1, ea are complex basis vectors and YNt

s are the
generalized spherical harmonics (Phinney & Burridge 1973).
By substituting (7) into (6), the splitting matrix is reduced to a
form similar to (4):

Hmm'~
1

2u0

X2l
s~0
even

Xs
t~{s

cmm'
st

X
abcd

�a
0
Labcd
st (r)gabcd

s r2dr

( )
, (8)

where g comprises sensitivity kernels and interaction rules,
given explicitly in Li et al. (1991). In the case of an isolated
multiplet, the coe¤cients of the expansion of the elastic tensor
with s odd do not contribute to the splitting. The term in
brackets is the splitting coe¤cient, cst, in which the contribution
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of general anisotropy requires summation over all elastic
tensor elements. As demonstrated in Li et al. (1991), because
of symmetry considerations, there are only 13 independent
elements for each harmonic component (s, t). For s~0 and
s~2, these numbers reduce to 5 and 11 respectively, since
jazbzczdj¦s.

Partial derivatives

In the two-step inversion, the splitting coe¤cients cst for each
mode are ¢rst iteratively estimated from the observed seismo-
grams u(t). The coe¤cients for all of the modes are then com-
bined in a linear inversion for intrinsic structure. Following
Giardini et al. (1988), the linearized partial derivative relating
the observations to the splitting coe¤cients can be deduced by
considering the perturbed initial value problem,

d
dt

dP~idH PziH dP , dP(0)~0 , (9)

which has the solution

dP~

�t
0
P(t{t')dHP(t') dt' . (10)

The solution, P(t)~ exp (iHt), to the unperturbed problem can
be decomposed using the eigenvectors U and eigenvalues Ù of
the splitting matrix H :

P(t)~U exp (iÙt)U{1 . (11)

Substituting into eq. (11), the solution takes the form

dPij~
X
pqmm'

�t
0
iUip exp [i)pp(t{t')]

|U{1
pm dHmm'Um'q exp [i)qqt']U{1

qj . (12)

Integration over time provides a linear relationship between
the perturbation in P(t) in eq. (3) and a perturbation in the
splitting matrix,

L exp (iHt)
LHmm'

~
X
pq

UipU{1
pm Um'qU{1

qj
ei)qqt{ei)ppt

)qq{)pp
, p=q .

(13)

From the relationship between the splitting matrix and the
splitting coe¤cients (eq. 4), the linearized seismogram can be
written in the form

du(t)~Re
X
pqst

u0r0ps
0
qc
0
pqst

ei)qqt{ei)ppt

)qq{)pp
dcst

 !
, p=q , (14)

leading to the ability to evaluate the partial derivative
Lu(t)/Lcst.
Since the relationship between each splitting coe¤cient and

intrinsic structure in eq. (5) is linear, the partial derivative to
infer structure from the splitting coe¤cients Lcst/Lmk

st is easily
formed.
In the direct inversion, we simply combine the two partial

derivatives discussed above to generate the linearized derivative
relating the observed seismogram directly to intrinsic structure,
Lu(t)/Lmk

st.

DATA SELECTION AND PREPARATION

We consider data from eight large earthquakes (7.5<Mw<8.0)
since 1994 (Table 1). Four of these events have intermediate-to-
deep foci, providing good excitation of deep sampling over-
tones and in particular of inner-core-sensitive modes. Each of
these events was recorded at more than 100 three-component
broad-band stations distributed over the globe.
Since we are particularly interested in spheroidal modes that

sample into the inner core, we only consider vertical-component
records, which have the best signal/noise ratio. The data are
processed as follows.

(1) Raw time-series are extracted, starting 10^20 hr before
the event and roughly 100^200 hr following the event.
(2) Obvious glitches are removed. Single-sample spikes are

interpolated, while data gaps, which are considerably more
rare than in data sets used in earlier normal mode studies, are
£agged or rejected.
(3) All frequencies below 0.05 mHz are removed using a

polynomial ¢tting scheme (£agged data gaps are ignored).
(4) The time-series are reduced to acceleration and are

compared to synthetic seismograms to detect errors in the
reported instrument response.
(5) Additional editing is performed to remove subsequent

events or aftershocks.

The presence of large events following the main event of
interest introduces two corrupting in£uences. First, they excite
low-Q modes, e¡ectively elevating the noise £oor. Second, if
su¤ciently large, they modify the phase and amplitude of the
mode of interest. While the ¢rst problem is largely addressed
by windowing out several hours following the aftershock, the
second problem requires including the perturbing e¡ect of
the aftershock in the inversion. For the time windows used in
this study, we have modelled the e¡ect of subsequent events
and found it to be negligible.

Table 1. Earthquakes used in the analysis.

Centroid time Centroid hypocentre Moment tensor elements (|1020 N m)
Date Time Region Lat: Long: Depth Duration Mw Mo Mrr Mhh M�� Mrh Mr� Mh�

(1020 N m)

1996 Jan 01 08:05:23:1 Minahassa Peninsula 0:74 119:93 15 44:0 7:9 7:78 1:35 {0:99 {0:36 {7:27 {2:36 {0:86
1996 Feb 17 06:00:02:7 West Irian Region {0:67 136:62 15 59:2 8:2 24:10 8:48 {7:15 {1:33 {18:31 13:13 3:10
1994 Mar 09 23:28:17:7 Fiji Islands Region {17:69 {178:11 568 32:0 7:6 3:07 {1:22 0:20 1:02 {0:13 {2:50 1:39
1994 Jun 09 00:33:45:4 Northern Bolivia {13:83 {67:56 647 40:0 8:2 26:30 {7:59 7:75 {0:16 {25:03 0:42 {2:48
1996 Jun 17 11:22:33:7 Flores Sea {7:38 123:02 584 38:8 7:8 7:30 {5:53 6:01 {0:48 {1:59 3:43 2:48
1995 Jul 30 05:11:23:5 Northern Chile {24:17 {70:74 29 32:0 8:0 12:15 8:26 0:43 {8:69 0:30 {8:67 0:64
1994 Oct 04 13:23:28:5 Kuril Islands 43:60 147:63 69 50:0 8:3 30:00 12:14 10:87 {23:01 17:82 9:80 {9:39
1995 Oct 09 15:36:28:8 Jalisco, Mexico 19:34 {104:80 15 38:8 8:0 11:47 3:62 {2:53 {1:09 9:44 {5:49 1:40
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To edit the data for individual modes, the time-series are
Hann-tapered and transformed to the spectral domain. For
each station, the time window is speci¢ed that visually pro-
vides the best signal-to-noise ratio in the spectral domain and
presents the least interference with other modes. The time
window chosen is generally 1.0^1.7 Q-cycles in length, a range
determined by Dahlen (1982) to optimize the trade-o¡ between
signal loss and spectral resolution for a Hann-tapered record.
Synthetic seismograms are generated during editing for two
purposes: to assess the consistency of predictions from existing
3-D models, and to examine the excitation of the target
multiplet relative to neighbouring modes. Each synthetic trace
is generated in the time domain, and the same windowing,
¢ltering and processing as for the data are applied.
Inner-core-sensitive multiplets are examined that are iso-

lated from neighbouring multiplets, resulting from separation
in either frequency or quality factor. Since inner-core-sensitive
modes are typically characterized by slow decay, a time window
may be chosen after an event such that low-Q neighbour-
ing modes have decayed into the noise. For several of the
modes studied, it is necessary to start the time window for
spectral analysis roughly 5^20 hr following the event to allow
well-excited neighbouring low-Qmodes to decay into the noise.
We assume source parameters as given in the CMT

catalogue (Dziewonski et al. 1981). To account for the source
duration of these large events, which becomes a signi¢cant
fraction of the mode period at the shortest periods (T*100 s),
we convolve the predicted trace with a boxcar with the width
of the source duration. We assume that the complexity of the
source rupture is a second-order e¡ect. The consequence of
neglecting the temporal extent of rupture for these large events
is an underestimation of the quality factor by 3^5 per cent for
modes between 100 and 200 s period, decreasing to no e¡ect at
the longest periods. This systematic bias is due to the fact that a
seismogram that is not convolved with the source duration will
overpredict the short-period energy and thus require greater
attenuation (lower Q) to match the data.

DETERMINATION OF SPLITTING
FUNCTIONS

In this section, we document the e¡ect of heterogeneity on
normal mode spectra by inverting for the splitting function of
each mode (eqs 4 and 14).We later assess the consistency of the
retrieved splitting functions with those predicted from inner
core structure obtained from a one-step inversion of all mode
observations.
The objective function to be minimized is a combination of

the mis¢t to the data as well as some property of the model, m:

'(m)~[d{f (m)]TC{1
e [d{f (m)]zmTC{1

m m . (15)

In our application, d represents the observed complex spectrum
for a mode at all stations and f is the non-linear relation
between the desired splitting functions, m, and the spectrum
of each mode. The data covariance matrix, Ce, essentially
weights the data by the inverse of its uncertainty and assures
uniform variance. There are numerous schemes to approximate
accurately this matrix in applications where it is di¤cult to
assess all data errors. Among these are weighting the data by
the a posteriori mis¢t (Wong 1989; He & Tromp 1996) and
assessing the signal-to-noise ratio using a window prior to each
event (Li et al. 1991). We implement the following weighting

scheme, the two parts of which must be combined to give
a balanced weighting of the data. First, for each event we
normalize the average variance of each event. Thus, data
randomly chosen from two events will have roughly the same
contribution to the inversion. However, data from di¡erent
stations within an event will be weighted only by their natural
amplitude, since we do not want to boost the contribution of
nodal stations arti¢cially. For the second part of the weight, we
assign a qualitative grade based on the noise level, the strength
of neighbouring modes, and the signi¢cance of the particular
record to constrain the ¢nal solution.While we could explicitly
calculate a signal-to-noise level using a noise sample preceding
the earthquake, we believe that this quality grade allows
greater £exibility in assessing shortcomings in the data.
The model covariance matrix, Cm, imposes prior restrictions

on the solution space of possible models, and often enforces an
a priori assumption about how the model should behave. In
this implementation, we apply a damping on both the model
norm and the gradient.
While the uncertainties in the retrieved splitting functions

may be evaluated using the a posteriori model covariance
matrix, Cm, we have instead investigated the robustness of the
models using a bootstrap method. A quarter of the data for
each mode are randomly selected and inverted for a splitting
function, with damping modi¢ed to preserve the same number
of degrees of freedom as in the inversion of the full data set. The
variability of the retrieved coe¤cients indicates its importance
in explaining the observed spectra and is taken as a measure of
the uncertainty. While the statistics of the bootstrap method
are strictly valid only when the data are all independent,
we argue that this method provides a measure of the relative
uncertainties amongst the coe¤cients for each mode, although
the absolute level of error may be less well estimated.
The availability of data from several earthquakes and the

balanced weighting of the data lead to convergence within 3^4
iterations. After the ¢rst couple of iterations, in which the
solution is in the neighbourhood of a minimum, we allow the
moment of each event to be adjusted to correct for source error.
Fig. 1 demonstrates the success of describing the observed

spectra through an inverse procedure for the splitting
coe¤cients.

Starting model

For modes sensitive to the mantle only, it is our experience that
the splitting function obtained from the non-linear iterative
inversion is independent of the (reasonable) starting model
(e.g. Li et al. 1991; Kuo et al. 1997). For the core-sensitive
modes, whose strong splitting represents the largest observed
departure from sphericity, the retrieved splitting function
is dependent on the starting model, and convergence with
meaningful variance reduction is not often obtained when
starting from PREM. Megnin & Romanowicz (1995) have
demonstrated that the solution spaces for several core-sensitive
modes have numerous local minima and, for some modes such
as 13S2, multiple global minima (although in such cases the
alternative solutions are generally inconsistent with solutions
from other modes or a priori constraints on model size). We
choose starting models based on combinations of existing
mantle models (e.g. SAW12D, Li & Romanowicz 1996) and
existing models of inner core anisotropy (SAT, Li et al. 1991;
STO, Shearer et al. 1988; CRG, Creager 1992). In several cases,
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the convergence behaviour is signi¢cantly improved if we
¢rst invert for degree 0 splitting coe¤cients (perturbation in
centre frequency and Q of the mode) and incorporate these
shifts into the starting solution. In addition, several diagnostics
exist that are useful in discriminating between two competing
solutions: (1) limited variance reduction and poor convergence,
(2) signi¢cant mis¢t to a subset of data, and (3) large decrease
in moment adjustment for a speci¢c event, indicating that data
from an event are inconsistent with the solution.
As an example, Fig. 2 presents two competing splitting

functions for 13S2 obtained using di¡erent starting models
that ¢t the data to a similar level. To help discriminate between
the two solutions, Fig. 3 compares the amplitude spectrum
predictions of the two splitting functions with the observations
for a great event in the Flores Sea (06/17/96). While both
retrieved splitting functions have some di¤culty at high
latitudes, solution B completely fails to predict an obvious
singlet visible at mid-latitude stations and predicts a singlet not
visible in the data. These failures allow us to reject the bottom
splitting function as not adequate to explain the data.

Impact of short-wavelength structure

Each isolated mode is sensitive to lateral structure up to
angular order 2l, where l is the angular order of the mode.
Thus, several of the modes considered have no sensitivity

beyond degree 6, the truncation level in this study, and are not
subject to aliasing e¡ects, a great advantage of normal mode
analysis. However, we can also make the argument that low-
degree structure is a dominant component of the observed
splitting. The core-sensitive modes of angular orders 1 and 2
(sensitive only to structure up to degrees 2 and 4 respectively)
are among the modes most anomalously split. The distri-
bution of singlet frequencies for observed spectra also shows a
dominant signal related to degree 2 structure (Widmer et al.
1992).
For two sample modes sensitive to higher-order structure,

11S5 and 8S5, we have compared solutions when we increase
the truncation of the spherical harmonic expansion beyond the
degree 6 used in the ¢nal solutions. Both modes are sensitive to
structure at degree 10 (s~2l). In Fig. 4(a), the power spectrum
of the splitting function for mode 8S5 clearly shows that
structure through degree 6 remains largely unchanged as the
truncation level is extended to higher degrees. The correlation
at all degrees is signi¢cant beyond the 98 per cent level. It is
also clear that the amplitude in degree 4 decreases by 30 per
cent as the truncation is extended to degree 6, suggesting that
truncation at degree 4 introduces aliasing. A statistical F-test
shows that the extension of the inversion to degree 6 is signi¢-
cant beyond the 90 per cent level, while the variance reduction
gained from truncations at degrees 8 and 10 are unjusti¢ed.
Mode 11S5 (Fig. 4b) illustrates this further, in that the amplitude

Figure 1. Each frame compares the normal mode phase (top) and amplitude (bottom) spectra that are observed (solid) and predicted (dashed). The
predictions of the retrieved splitting functions (right) are signi¢cantly improved compared to those based only on mantle structure, ellipticity and
rotation (left).
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in degree 4 changes by up to 40 per cent as the truncation is
extended beyond degree 6, and the F-test also justi¢es the
additional structure. However, we again ¢nd that the pattern
represented by degrees 2^6 is spatially stable (correlation
beyond 98 per cent signi¢cance), and question the accuracy of
the structure at degree 10 given that roughly 300 independent
data are constraining 67 harmonic coe¤cients.

Splitting functions of inner core modes

We applied the non-linear iterative inversion to 25 inner-core-
sensitive modes, 3S2, 5S2, 5S3, 8S1, 8S5, 9S2, 9S3, 9S4, 11S4, 11S5,
13S1, 13S2, 13S3, 14S4, 15S3, 16S5, 18S2, 18S3, 18S4, 21S6, 22S1, 23S4,
23S5, 27S1, 27S2. Table 2 presents the distribution of shear and
compressional energy of these modes in the inner core.

Figure 2. Comparison of two alternative splitting functions (centre) for mode 13S2 retrieved from di¡erent starting models.
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We did not include the following modes due to their overlap
and potential coupling with other modes: 2S3, 3S1, 6S3, 7S2.
While Resovsky & Ritzwoller (1995) demonstrated that, even
in the case of signi¢cant coupling between two modes, the
degree 2 splitting function is largely unbiased, we will avoid
such complications in this analysis.
Table 3 presents the variance reduction, resolution and

splitting width resulting from the inversions for the splitting
coe¤cients of 25 modes. Modes 5S2, 5S3 and 9S2 would not be
classi¢ed as anomalously split, as might be expected since these
modes have little sensitivity to the inner core.

Figure 3. Comparison of the observed amplitude spectra (left) of mode 13S2 with those predicted for the two retrieved splitting functions (Fig. 2).
While the variance reduction to the total data set is similar, model `B' exhibits di¤culty in explaining observations near the equator.

Figure 4. The normalized amplitude in each degree for splitting
functions retrieved with di¡erent truncation levels: (top) mode 8S5,
(bottom) mode 11S5.

Table 2. Energy density of inner-core-sensitive modes.

Mode Percentage of energy in core
Outer Inner

Total Bulk Shear

3S2 22:1 7:7 0:1 7:6
5S2 20:1 0:5 0:0 0:5
5S3 16:8 0:2 0:0 0:2
8S1 44:7 7:7 6:7 1:0
8S5 38:1 2:8 0:0 2:8
9S2 15:1 0:9 0:6 0:3
9S3 42:6 0:9 0:6 0:3
9S4 39:0 7:3 0:2 7:1
11S4 47:4 1:4 0:2 1:2
11S5 45:1 0:8 0:1 0:7
13S1 37:0 18:3 15:5 2:8
13S2 43:3 9:6 8:3 1:3
13S3 47:3 4:5 3:4 1:1
14S4 46:8 4:9 1:2 3:7
15S3 47:7 8:8 7:2 1:6
16S5 43:0 1:8 0:7 1:2
18S2 32:3 15:2 12:6 2:6
18S3 41:7 11:4 9:8 1:6
18S4 44:8 6:0 5:0 1:0
21S6 46:1 2:7 1:4 1:3
22S1 42:9 15:9 12:4 3:5
23S4 41:1 13:0 10:8 2:2
23S5 45:1 7:9 6:7 1:2
27S1 37:3 20:1 15:5 4:7
27S2 42:4 14:7 12:4 2:3
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The degree 0 coe¤cients of the splitting functions represent
the corrections to the reference model, in centre frequency and
attenuation, presented in Table 4. Many of the adjustments of
the modes relative to PREM are in the same direction, if not
of a similar magnitude to those presented by Li et al. (1991)
Widmer et al.(1992), and He & Tromp (1996).
The splitting function coe¤cients, their uncertainties and

resolution are presented in Table 5, with corresponding splitting
functions plotted in Fig. 5. While the mantle contribution to
most of these modes is dominated by a c22 structure associated
with subduction, the splitting functions are generally dominated
by an anomalously large zonal structure. To demonstrate
this, Figs 6 and 7 respectively compare the zonal c20 and c40
coe¤cients with those predicted for a typical mantle model
(SAW12D, Li & Romanowicz 1996) as well as coe¤cients from
other published studies.
To reiterate the relationship between the observed splitting

and possible anisotropic structure in the inner core, Fig. 8 com-
pares the c20 and c40 coe¤cients of each mode, corrected for
mantle structure, with the rms values of the anisotropic kernels
for each degree s (Woodhouse et al. 1986) under the restrictive
assumption that the anisotropy is transversely isotropic. For
both degrees 2 and 4, the outlying point is the coe¤cient for
mode 3S2, indicating the large splitting and high sensitivity to
inner core anisotropy documented byWoodhouse et al. (1986).
It may be argued that a linear trend relating observed splitting

and sensitivity exists for the degree 2 coe¤cients, suggesting
why transverse isotropy has been successful in explaining
the dominant character of observed splitting. However, the
departures from the linear trend seen for the degree 4 coe¤cients
suggest that additional complexity beyond transverse isotropy
is required to explain the data fully.

DIRECT INVERSION OF NORMAL MODE
SPECTRA

Since the splitting functions for inner core modes exhibit non-
uniqueness with multiple minima (e.g. Li et al. 1991; Megnin
& Romanowicz 1995), we cannot assert that the splitting
functions of all the modes are representative of the Earth's
structure. To circumvent this problem, we perform a direct and
simultaneous iterative inversion of all observed mode spectra
for inner core anisotropy. In such an approach, the spectra of
each mode may only be modelled by structures allowed by the
model parametrization.

Model parametrization

The anomalous signal in the mode spectra is dominated by zonal
structure, as exempli¢ed by the large c20 and c40 coe¤cients
of the splitting functions. We can thus expect to explain a
signi¢cant fraction of the anomalous splitting by restricting
our investigation to axisymmetric structures, which e¡ectively
perturbs only the c00, c20 and c40 splitting coe¤cients of each
mode. This strong restriction is in contrast to the inversion for
individual splitting functions in which 6^28 free parameters
were allowed per mode. In the direct inversion of normal mode
spectra, we will consider the following heterogeneous structures.

Table 3. Results of splitting function inversion. The variance ratio is
de¢ned as the squared mis¢t relative to the squared data. The initial
variance (Var0) is obtained using ellipticity, rotation and mantle model
SAW12D and is compared with that obtained following inversion for
the splitting functions of each mode. The splitting width, W , in the
frequency spread of the 2lz1 singlets is compared with that predicted
for rotation, ellipticity and mantle model SAW12D (Li & Romanowicz
1996). The degrees of freedom (R) is the trace of the resolution matrix
given relative to the number of unknowns describing lateral structure.

Mode Var0 Var W R # records

3S2 1:343 0:209 1:49 11:5=14 103
5S2 0:414 0:070 1:16 5:4=14 34
5S3 0:221 0:126 1:08 17:6=27 81
8S1 0:864 0:187 1:42 6:9=7 119
8S5 1:129 0:223 1:91 24:1=26 131
9S2 0:675 0:266 1:23 12:0=14 61
9S3 1:323 0:187 1:57 21:0=26 89
9S4 1:365 0:235 2:26 17:3=26 59
11S4 1:166 0:074 1:80 21:3=27 117
11S5 0:607 0:124 1:41 22:7=27 113
13S1 3:291 0:250 2:37 6:5=7 90
13S2 1:173 0:123 2:15 12:1=14 104
13S3 1:035 0:166 1:53 23:8=27 121
14S4 1:869 0:239 1:56 14:8=27 46
15S3 1:438 0:229 1:66 16:0=27 102
16S5 2:378 0:165 1:59 17:4=27 70
18S2 2:621 0:343 1:95 9:6=14 54
18S3 2:702 0:266 1:39 17:6=27 90
18S4 0:871 0:176 1:42 19:4=27 120
21S6 2:414 0:305 1:41 14:1=27 64
22S1 0:609 0:188 1:65 6:2=7 47
23S4 1:892 0:279 1:56 15:8=27 81
23S5 1:424 0:251 1:35 12:3=27 91
27S1 1:146 0:477 1:38 5:7=7 41
27S2 1:195 0:259 1:66 11:5=14 97

Table 4. Centre frequencies and quality factors for inner-core-sensitive
modes.

Mode Centre frequency Quality factor
PREM Observed PREM Observed

3S2 1106:21 1106:02+0:12 366 334+12
5S2 2091:27 2090:81+0:17 317 364+10
5S3 2169:66 2168:76+0:10 292 335+8
8S1 2873:36 2872:65+0:04 929 1044+17
8S5 4166:20 4165:41+0:09 611 708+9
9S2 3231:73 3231:10+0:25 407 496+13
9S3 3554:98 3556:62+0:14 777 744+17
9S4 3877:96 3879:88+0:38 515 564+18
11S4 4766:87 4766:16+0:06 701 742+8
11S5 5074:41 5072:95+0:10 665 676+11
13S1 4495:73 4494:51+0:05 735 691+7
13S2 4845:26 4844:63+0:04 878 944+11
13S3 5193:82 5194:01+0:07 908 1009+13
14S4 5541:84 5542:66+0:33 742 759+21
15S3 6035:23 6030:93+0:10 806 816+13
16S5 6836:40 6830:30+0:14 581 544+7
18S2 6545:68 6538:69+0:63 533 450+8
18S3 6891:92 6886:42+0:13 851 858+11
18S4 7240:99 7238:51+0:09 943 1026+9
21S6 8850:77 8849:64+0:36 740 583+12
22S1 7819:55 7822:39+0:12 767 1038+16
23S4 8941:57 8937:26+0:31 809 825+9
23S5 9289:58 9289:92+0:14 899 947+10
27S1 9485:85 9496:15+0:70 648 967+47
27S2 9865:34 9873:37+0:19 789 874+17
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Figure 5. Retrieved splitting functions for 25 inner-core-sensitive normal modes (right) and their sensitivity to radial perturbations in op (solid),
os(grey) and o(dashed) (left).
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Figure 5. (Continued.)
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Anisotropic structure

We consider three classes of anisotropic models for the inner
core.

Constant cylindrical anisotropy

The initial parametrization considers the simplest departure
from isotropy, a cylindrically anisotropic structure with con-
stant strength and fast axis parallel to the rotation axis. Such a
structure is characterized by ¢ve elastic constants, A, C, F , L
and N, where A~V2

pvo, C~V2
pho describe the anisotropy in P

velocity, L~V2
svo and N~V2

sho describe the anisotropy in S
velocity, and F is related to the squared velocity at intermediate
propagation angles. Transverse isotropy may be completely
described by a degree 4 spherical harmonic expansion of the
elastic tensor "abcd

s0 (Tanimoto 1986; Mochizuki 1987; Tromp
1995b). In this case, the 26 coe¤cients are linear combinations
of the ¢ve elastic constants.

Radially varying cylindrical anisotropy

In the next case, we allow the strength of the ¢ve elastic
constants to vary with radius, A(r), C(r), F (r), L(r) and N(r)
(e.g. Woodhouse et al. 1986; Li et al. 1991; Tromp 1995) by

parametrizing the radial variability using polynomials of order
4 in radius r. However, only even-order polynomials occur in
the description of splitting for an isolated multiplet (Li et al.
1991). We are thus left with 15 free parameters to determine.
While there are clear indications that anisotropy is more

complicated than radially varying transverse isotropy, this
characterization is still common in analyses of traveltime
anomalies and is used for calculations of the rate of di¡erential
rotation (e.g. Song & Richards 1996; Su et al. 1996).

Axisymmetric anisotropy

Following Li et al. (1991), we relax the form of allowable
anisotropy by removing the requirement of transverse iso-
tropy. To maintain a manageable number of unknowns in the
inversion, we restrict the anisotropy to being axisymmetric
relative to the rotation axis, consistent with the fact that the
dominant signal in the normal mode spectra is due to zonal
structures. For lateral structure expanded to degree 4 in
spherical harmonics and radial polynomials of orders 2 and 4,
there are 38 coe¤cients that contribute to isolated mode
splitting while maintaining the non-singularity of the elastic
tensor at the centre of the core.
Although evidence exists for a departure of the symmetry

axis from the rotation axis by roughly 100 (Shearer & Toy 1991;

Figure 5. (Continued.)
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Creager 1992; Su & Dziewonski 1995; Romanowicz et al.
1996), it is not well resolved in normal mode data and we have
not incorporated it into the parametrization.

Isotropic structure

The modes considered are sensitive to isotropic structure
throughout Earth, both in the mantle and core.

Inner Core

In the inner core, there is evidence that a portion of the
traveltime signal is consistent with isotropic heterogeneity in
compressional velocity (e.g. Su & Dziewonski 1995; Tanaka
& Hamaguchi 1997). Allowing only anisotropic structure in
the inner core assumes that there is no chemical or thermal
variability in the core that would give rise to signi¢cant iso-
tropic heterogeneity. Since there are indications that the inner
core contains isotropic heterogeneity, we include zonal isotropic
heterogeneity of lateral degree 4 and radial order 4, adding six
additional parameters.

Mantle heterogeneity

We ¢rst consider that mantle structure is well described
by existing tomographic mantle models, and correct the

mode data using the shear velocity model SAW12D (Li &
Romanowicz 1996). We only consider the structure through
spherical harmonic degree 6, since many mantle models are
well correlated at this wavelength (e.g. Laske & Masters 1995).
In later discussion, we will examine the e¡ect of using di¡erent
mantle models on the inferred inner core structure.

Reference model: correction to centre frequency

When modelling the splitting of normal modes, a failure to
align the predicted and observed spectra leads to incorrect
modelling and poor ¢tting of the spectra. To allow for optimal
alignment of the modes, we parametrize perturbations to the
radial isotropic velocity structure in the mantle (VP(r), VS(r)),
using order 4 Chebyshev polynomials.We perturb VP(r) in the
inner core using polynomials of order 2.

Inversion procedure

Normal modes

The spectral observations of a single mode observed following
several events are weighted as discussed previously. In the
combined inversion of all modes, the individual modes are
weighted to provide equal contributions to the ¢nal model.
We exclude the modes 9S3, 14S4, 27S2, 27S1 and 21S6 due to the
poor convergence behaviour of these modes in the non-linear

Figure 6. Comparison of the retrieved c20 splitting coe¤cient with published values and the predictions of a current mantle mode (Li &
Romanowicz 1996).
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estimation of the splitting functions, but we will examine the
consistency of the ¢nal model with these modes.

Traveltime data

Since normal modes lack sensitivity to the centre of the inner
core, we incorporate a subset of deep-turning PKP di¡erential
traveltime observations (Souriau & Romanowicz 1996; Vinnik
et al. 1994; Song 1996). The traveltimes are upweighted to
provide a quarter of the total data variance, to ensure their
contribution to the ¢nal model.

Starting solution

While the retrieval of individual splitting functions is strongly
dependent on the starting model chosen, the direct inversion
commonly converges starting from a spherical reference
model. Adequate convergence requires 5^6 iterations. We
¢nd that the convergence is enhanced if, after the ¢rst three
iterations, the perturbations to the radial reference model are
zeroed before additional iterations.

RETRIEVED MODELS

For this initial set of inversions, Table 6 provides the variance
reduction to the individual mode spectra and traveltime data
while Table 7 lists the ¢ts to the splitting coe¤cients retrieved
in the previous section.

Figure 7. Comparison of the retrieved c40 splitting coe¤cient with published values and the predictions of a current mantle mode (Li &
Romanowicz 1996).

Table 6. Residual variance for di¡erent parametrizations of inner
core anisotropy.

Mode Inner core parametrization
Transverse isotropy
Constant Radial Axisymmetric

3S2 0:33 0:36 0:31
5S2 0:40 0:41 0:37
5S3 0:20 0:20 0:19
8S1 0:31 0:30 0:29
8S5 0:43 0:43 0:43
9S2 0:64 0:63 0:63
9S4 0:40 0:39 0:37
11S4 0:66 0:40 0:35
11S5 0:36 0:31 0:27
13S1 0:34 0:64 0:42
13S2 0:48 0:44 0:35
13S3 0:42 0:39 0:41
15S3 0:92 0:85 0:73
16S5 1:28 1:24 0:95
18S2 2:74 0:84 0:51
18S3 1:13 0:70 0:73
18S4 0:44 0:54 0:53
22S1 0:97 0:59 0:61
23S4 0:68 0:61 0:62
23S5 1:38 0:77 0:73

Total 0:73 0:55 0:48

Traveltimes 0:24 0:22 0:14
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Constant transverse isotropy

For constant anisotropy with the symmetry axis parallel to the
rotation axis, we retrieve the following combinations of the ¢ve
elastic parameters that are resolved:

(1) the fractional di¡erence in velocity for equatorial and
axial travelling P waves (compressional anisotropy),

�~
1
2
(A{C)/A0~2:5 per cent , (16)

where A0 is the reference velocity;
(2) the fractional di¡erence in velocity for equatorial and

axial travelling S waves (shear anisotropy),

p~
1
2
(N{L)/N0~0:4 per cent , (17)

c~
{1
4

(1/2Az1/2C{2L{F )/A0~0:1 per cent . (18)

The value of � of 2.5 per cent is reasonably close to that
obtained by body wave studies; Su & Dziewonski (1995) and
Tromp (1995a) found peak levels of P-wave anisotropy not
exceeding 3 per cent, while other studies argued for an average
level of 3^3.5 per cent. The value of c governing anisotropy for
meridionally polarized S waves (Smed) is smaller than that
predicted theoretically (*10 per cent) by Stixrude & Cohen
(1995) or inferred by body wave analyses (e.g. Su &Dziewonski
1995) but is similar to that inferred by Tromp (1995a). The
value of p that describes anisotropy for equatorially polarized
S waves (Seq) is in better agreement with the theoretical value.
If traveltimes are not included in the inversion, the P-wave
anisotropy drops to 1.8 per cent, which we attribute to the
limited resolution achievable using only normal mode data.
From the values in Table 6, column 1, and Table 7, row 1,

this simple model of anisotropy can simultaneously explain
an appreciable level of variance in the c20 splitting coe¤cient
(75 per cent) as well as the traveltimes (76 per cent). The con-
sistency of the degree 2 splitting coe¤cient is not unexpected,

given the linear trend between the retrieved coe¤cients and the
rms kernels for this simple structure (Fig. 8). Upon closer
inspection, however, it is clear that a subset of the normal
mode spectra remains unexplained by this simpli¢ed structure,
especially 18S2, 16S5, 18S3, 22S1 and 23S5. In addition, the degree
4 splitting coe¤cients are poorly estimated by this model,
suggesting the necessity of additional complexity (Romanowicz
et al. 1996).

Radially varying transverse isotropy

When variability in the radial strength of anisotropy is intro-
duced (Fig. 9), a minimum in P-wave anisotropy appears
around 300 km below the ICB, similar in character to that
observed using traveltimes (Su & Dziewonski 1995) and
normal modes (Tromp 1995a). Near the surface, the level of
anisotropy is roughly 3 per cent, consistent with previous body
wave studies. The anisotropy peaks at 5 per cent in the centre of
the core, again similar in character to the body wave model
of Su & Dziewonski (1995). The S-wave anisotropy deviates by
less than 2 per cent at all depths.
The added £exibility has signi¢cantly improved the ¢t to

several individual modes and reduced the total mis¢t to the
mode spectra from 0.73 to 0.55. However, the ¢t to the travel-
times has not been reduced signi¢cantly and the predicted c40
splitting coe¤cients (Table 8, row 2) remain strongly discrepant
(interestingly, the ability to explain the degree 2 coe¤cients has
also degraded). It is thus clear that there are signals in the data
that cannot be modelled with cylindrical anisotropy.

Axisymmetric expansion of the general elastic tensor

Since the inversions with cylindrical anisotropy are unable to
explain all aspects of the data, in this section we consider a
more general expansion of the anisotropic elastic tensor under
the restriction that the structure remain axisymmetric (Li et al.
1991; Romanowicz et al. 1996).

Table 7. Summary of inversions for inner core anisotropy.
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Fig. 10 presents a cross-section through the inner core with
P-wave velocity variations for waves travelling parallel to the
rotation axis, showing velocities up to 4.5 per cent faster than
average. The region of fast velocity concentrated near the
centre of the core for the radially varying transversely isotropic
models is now elongated in the direction of the rotation axis
(if the data were satis¢ed by a model of cylindrical anisotropy,
the contours would be concentric circles). This structure is
consistent with the results of Romanowicz et al. (1996), who
applied a two-step inversion to a smaller data set. The retrieved
isotropic heterogeneity is relatively insigni¢cant, with variations
in structure of less than 1 per cent.
For polar-parallel propagating P waves, the optimal

model of anisotropy also predicts a shallow region of increased

Figure 10. Cross-section through the inner core for an axisymmetric
model showing velocity perturbations for P waves travelling parallel to
the rotation axis.

Figure 8. The residual splitting coe¤cients c20 (top) and c40 (bottom)
compared to the rms of the anisotropic kernels in the inner core, under
the restrictive assumption of transverse isotropy with symmetry axis
aligned with the rotation axis. The coe¤cients represent the residual
signal after the predictions for ellipticity, rotation and mantle model
SAW12D (Li & Romanowicz 1996) have been removed.

Figure 9. Radial variability of P-wave anisotropy (�) and S-wave
anisotropy (p, c) in per cent.
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axis-parallel velocity, which if robust would also be expected if
alignment due to general convection was the dominant mech-
anism of anisotropy (Romanowicz et al. 1996). The predicted
traveltime anomaly of almost 2 s for waves bottoming at
100 km is larger than that observed from body wave studies by
a factor of two (e.g. Su & Dziewonski 1995), but the predicted
anomaly decreases to roughly 0.5 s when the propagation
direction is tilted 200 relative to the rotation axis.
The departure from radial symmetry increases the com-

patibility of the spectral observations and the traveltime data
with clear reductions in residual variances (Table 6, column 3).
In addition, the predicted splitting coe¤cients are in better
agreement with those retrieved in the previous section (Table 7,
row 3), especially for the degree 4 terms (the residual variance
dropping from 2.5 to 0.9).
Fig. 11 presents the perturbation in the radial isotropic

compressional and shear velocities; in all cases, these are less
than 0.5 per cent.While we do not consider these perturbations
to be well enough resolved to provide reliable corrections to the
reference model, we note that the character of the perturbations
is similar for all inversions described above. Interestingly, the
isotropic velocity at the top of the inner core is reduced slightly,
consistent with the inferences of Song & Helmberger (1992).

Table 8. Residual variance of modes for a shallow isotropic layer.

Mode Thickness of isotropic layer (km)
0 100 200 300

3S2 0:36 0:36 0:38 0:42
5S2 0:41 0:43 0:43 0:38
5S3 0:20 0:20 0:20 0:20
8S1 0:30 0:29 0:29 0:30
8S5 0:43 0:45 0:46 0:47
9S2 0:63 0:63 0:63 0:64
9S4 0:39 0:47 0:70 0:94
11S4 0:40 0:36 0:41 0:59
11S5 0:31 0:32 0:36 0:45
13S1 0:64 0:57 0:47 0:52
13S2 0:44 0:41 0:36 0:34
13S3 0:39 0:39 0:41 0:50
15S3 0:85 0:89 0:90 0:95
16S5 1:24 1:24 1:21 1:17
18S2 0:84 1:06 1:11 0:84
18S3 0:70 0:81 0:90 1:00
18S4 0:54 0:56 0:56 0:58
22S1 0:59 0:60 0:59 1:06
23S4 0:61 0:59 0:58 0:58
23S5 0:77 0:86 0:92 1:07

Total 0:55 0:57 0:59 0:65

Figure 11. Perturbations to (top) radial compressional and shear
velocity in the mantle and (bottom) radial compressional velocity in the
inner core.

Figure 12. Cross-section through the inner core for an axisymmetric
model showing velocity perturbations for P waves travelling parallel to
the rotation axis retrieved when perturbations to each mode centre
frequency are introduced into the inversion.
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EFFECTS OF ISOTROPIC RADIAL
STRUCTURE AND MANTLE
HETEROGENEITY

While consideration of general axisymmetric anisotropy is
better able to explain the observations than transversely iso-
tropic structure, the mis¢t to the anomalous c40 coe¤cients
remains high (residual variance of 0.90; Table 7, row 3). In
contrast, a linear inversion of splitting coe¤cients for inner
core anisotropy is able to explain more than 50 per cent of
the variance in the c40 splitting coe¤cients (Romanowicz et al.
1996). To examine this apparent discrepancy and investigate
potential trade-o¡s with isotropic structure, we (1) perform a
direct inversion with greater £exibility in modelling the mode
centre frequencies, and (2) examine the e¡ect of the (¢xed)
mantle structure.
To align the centre frequencies better in the ¢rst experiment,

we replace the parametrization for radial isotropic velocity
perturbations (which acts only to modify the centre frequencies)
with an explicit correction to the centre frequency for each
mode. The inversion has complete freedom to determine the
best centre frequency for each mode, with no requirement that
they be consistent with any radial model of structure. The
retrieved inner core models are not signi¢cantly di¡erent (e.g.
Fig. 12) and the ¢t to the spectra (Table 7, rows 4^6) improves
slightly for each of the three parametrizations, as expected
given the additional degrees of freedom. The ¢t to the travel-
times has degraded slightly, suggesting that some of the inner

core signal in the normal modes is being absorbed into the centre
frequency corrections, dc00. The prominent di¡erence from the
previous inversions is that the ¢t to all splitting coe¤cients is
uniformly improved at the level of 50 per cent.We interpret this
as indicating a trade-o¡ between ¢tting the centre frequency
and explaining the splitting of the mode, a trade-o¡ that
does not signi¢cantly impact the inferred inner core structure
(as seen by comparing Figs 12 and 10). From the result of this
experiment, we conclude that the parametrization of radial
isotropic structure, in conjunction with the ¢xed mantle model,
is too restrictive to model the anomalous isotropic signal in
the data completely.
We are reluctant simply to increase the number of degrees

of freedom in the radial isotropic parametrization since
experiments suggest that this leads to large radial velocity
perturbations. Instead, we examine the impact of the chosen
mantle model. Our motivation is that each mantle model is
published with a relatively short-wavelength degree 0 com-
ponent, a correction to the radial structure.While most studies
do not attach great signi¢cance to this radial perturbation,
it nonetheless represents the starting model for our pertur-
bation to the radial isotropic structure. Because we are using
long-wavelength radial polynomials, small-wavelength radial
structure in the starting mantle model cannot be modi¢ed even
if required by the data.
A signi¢cant improvement in explaining the splitting

coe¤cients is obtained when we consider a mantle model
based on a limited number of mantle-sensitive modes. We

Figure 13. Even-degree 4 mantle model S4W4.m10 (right) based on the direct inversion of 10 mantle-sensitive normal modes compared with
SAW12D (Li & Romanowicz 1996) ¢ltered to the same components (left).
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have used data for 10 mantle-sensitive-only modes in a direct
inversion for degree 4 lateral and order 4 radial mantle shear
velocity perturbations (e.g. Li et al. 1991; Kuo et al. 1997).
In the inversion, the density and compressional velocity are
assumed to be correlated and proportional to the shear velocity
(d ln b/d ln a~2:0, d ln b/d ln o~4:0). The resulting model
(Fig. 13) has similarities to SAW12D ¢ltered to the same
degree, although di¡erences may simply be a consequence of
the assumed proportionality constants and the limited data set
used in its construction.
We incorporate this mantle model into the direct inversion

of inner-core-sensitive modes (the lateral mantle structure is
¢xed; the degree 0 structure provides a starting model for
perturbations to the radial structure). The resulting inner core
anisotropic structure (Fig. 14) has not changed signi¢cantly.
However, the resulting models are better able to explain the
splitting coe¤cients (Table 7, row 7) with a residual variance of
0.57 for the c40 terms. The ¢t to the traveltimes is maintained
while the ¢t to the spectra is decreased slightly due almost
completely to a di¤culty in ¢tting 22S1. We do not claim that
we have developed an improved model of the mantle; the data
applied to the problem are too few. Rather, we stress that our
mantle model, when combined with the axisymmetric para-
metrization of inner core anisotropy, is more consistent with

the speci¢c and limited set of inner-core-sensitive spectra
considered in this study. We also note that this mantle model
is most consistent with the spectra under the restriction that
we allow only perturbations to the zonal (c20, c40) splitting
coe¤cients of each mode.
For our preferred model, we compare the predicted splitting

functions with those retrieved from spectral data as described
in the previous section (Fig. 15). For the majority of modes, the
predicted and observed splitting functions are remarkably
similar in strength and character, including those for modes
27S1 and 27S2, which were not used in the one-step inversion
for inner core anisotropy. For the shallow-sampling modes
11S4 and 11S5, the predictions reproduce the slightly stronger
splitting function observed for 11S4. The only gross di¡erence is
an underprediction of the splitting of 13S1. This di¡erence may
indicate non-uniqueness of the retrieved splitting function, a
reasonable hypothesis given the strong sensitivity of the l~1
modes to the chosen starting model.
Recent analyses of shallow-turning PKIKP waves suggest

that an isotropic layer may exist in the outer 300 km of
the inner core (e.g. Song & Helmberger 1998), which may
have implications for mechanisms of core solidi¢cation or
relaxation times in the shallow outer core (e.g. Bu¡ett 1997). To
investigate this hypothesis using the normal mode constraints,
we consider inversions for radially varying transverse isotropy
in which we impose a shallow isotropic layer of variable
thickness. We ¢nd, in Table 8, that the ¢ts to several normal
modes degrade when the thickness of the isotropic layer
exceeds 200 km, with the residual variance for the shallow-
sampling modes 11S4 and 11S5 increasing by roughly 50 per cent.
Interestingly, both shallow-sampling modes (11S4, 11S5) and
deeper-sampling modes (3S2, 22S1) show degraded ¢ts, leading
us to speculate that the unsuccessful attempts to adjust the
anisotropy to explain shallow-sampling modes cannot be com-
pensated at depth to maintain the ¢t to the deeper-sampling
modes.
The inner-core-sensitive modes investigated here may be

combined with mantle modes for a joint inversion of the whole
Earth structure (e.g. Li et al. 1991). We would expect ever
greater agreement with the spectral data, since the current
direct inversion is e¡ectively only perturbing three splitting
coe¤cients per mode. However, preliminary investigations
with our limited data set of mantle modes suggest that the
strong anomalous degree 2 signal can dominate the inversion,
placing unreasonable zonal structure in the mantle to explain
the inner-core-sensitive modes better at the expense of the
mantle modes. The acquisition of additional mantle-sensitive
mode data (Kuo et al. 1997) will better constrain the joint
inversion of mode spectra for mantle and core structure.

CONCLUSIONS

We have explored a number of improvements in the inversion
of normal mode spectra for anisotropic structure in the inner
core. The direct (`one-step') inversion allows us to avoid the
non-uniqueness problems inherent in the non-linear estimation
of normal mode splitting functions. Better ¢ts to the data can
be achieved by allowing adjustments in the mode central fre-
quencies and by using a mode-derived mantle model to correct
for 3-Dmantle structure. By allowing axisymmetric departures
from simple transversely isotropic models of anisotropy, we

Figure 14. Cross-section through the inner core for an axisymmetric
model showing velocity perturbations for P waves travelling parallel to
the rotation axis using mantle model S4W4.m10 as the ¢xed mantle
structure.
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con¢rm the results of Romanowicz et al. (1996), namely that
improved ¢ts to the data can be obtained with inner core
models that have a central zone, elongated in the direction
of the rotation axis, with about 3 per cent of anisotropy in P
velocity, while anisotropy is minimum at mid-depths in the
inner core. It is clear that additional complexity beyond axi-
symmetry exists in the inner core, as illustrated by several
recent PKP traveltime studies (eg. Tanaka & Hamaguchi 1997;

Creager 1997). A more general parametrization of inner core
anisotropy, allowing for longitudinal variations, is the subject
of current work in our laboratory. Finally, we have veri¢ed that
an isotropic layer at the top of the inner core, as proposed by
Song & Helmberger (1998), degrades the ¢t to mode splitting
data for thicknesses greater than 100^200 km. It is still possible
that the shallow inner core structure might be locally isotropic,
which would not be resolved by globally sampling modes.

Figure 15. Comparison of observed (left) and predicted (right) splitting functions for the preferred model of inner core anisotropy (Fig. 14) and
mantle model S4W4.m10.
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This indicates that there remain yet unresolved discrepancies
between normal mode and traveltime data regarding inner core
anisotropy. In particular, the strong zonal degree 2 structure
inferred by core-sensitive modes is incompatible with the
dominance of shallow degree 1 structure in inner core anisotropy
documented by Tanaka & Hamaguchi (1997). The present
study was conducted under the assumption that all of the
anomalous splitting originates within the inner core, based on
a consensus reached over the past decade after a long debate in
which other possible explanations such as outer core structure
have been proposed as alternatives (e.g. Widmer et al. 1992).
However, the hypothesis of contributions of isotropic structure

to anomalous observations may need revisiting in light of
studies suggesting an isotropic layer at the top of the inner core
as well as the results of Breger & Romanowicz (1998), which
indicate that much of the anomalous signal present in deep-
core-penetrating PKP waves can be explained by structure
within D@.
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