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S U M M A R Y
We present an extension to the coupling scheme of the spectral element method (SEM) with
a normal-mode solution in spherical geometry. This extension allows us to consider a thin
spherical shell of spectral elements between two modal solutions above and below. The SEM
is based on a high-order variational formulation in space and a second-order explicit scheme
in time. It combines the geometrical flexibility of the classical finite-element method with the
exponential convergence rate associated with spectral techniques. In the inner sphere and outer
shell, the solution is sought in terms of a modal solution in the frequency domain after expansion
on the spherical harmonics basis. The SEM has been shown to obtain excellent accuracy in
solving the wave equation in complex media but is still numerically expensive for the whole
Earth for high-frequency simulations. On the other hand, modal solutions are well known
and numerically cheap in spherically symmetric models. By combining these two methods
we take advantage of both, allowing high-frequency simulations in global Earth models with
3-D structure in a limited depth range. Within the spectral element method, the coupling is
introduced via a dynamic interface operator, a Dirichlet-to-Neumann operator which can be
explicitly constructed in the frequency and generalized spherical harmonics domain using
modal solutions in the inner sphere and outer shell. The presence of the source and receivers
in the top modal solution shell requires some special treatment. The accuracy of the method
is checked against the mode summation method in simple spherically symmetric models and
shows very good agreement for all type of waves, including diffracted waves travelling on the
coupling boundary. A first simulation in a 3-D D′′-layer model based on the tomographic model
SAW24b16 is presented up to a corner frequency of 1/12 s. The comparison with data shows
surprisingly good results for the 3-D model even when the observed waveform amplitudes differ
significantly from those predicted in the spherically symmetric reference model (PREM).

Key words: body waves, hybrid method, normal modes, spectral elements, surface waves,
synthetic seismograms, wave propagation.

1 I N T RO D U C T I O N

While it has long been known that the top layers of the Earth’s
interior, the crust and the uppermost mantle, are strongly hetero-
geneous, with lateral variations of structure commonly exceeding
10 per cent, it has only recently been recognized that such strong
variations may also be present at the bottom of the mantle, in the D′′

region. The latter, which encompasses the last 300 km or so of the
mantle (Bullen 1963), is thought to be both a thermal and a chemi-
cal boundary layer, and the site of vigorous dynamic processes (e.g.
Loper & Lay 1995; Lay et al. 1998). Recent global tomographic
models of S velocity clearly show the distinctive character of lateral
variations of structure at the top and at the base of the mantle (e.g.
Su et al. 1994; Li & Romanowicz 1996; Masters et al. 1996; Grand

et al. 1997; Liu & Dziewonski 1998; Ritsema et al. 1999; Mégnin
& Romanowicz 2000). The rms velocity profile peaks in the top
200 km and then again consistently shows a marked increase in the
deepest 500–800 km of the mantle. The spectrum of lateral hetero-
geneity changes from being ‘white’ in the bulk of the lower mantle,
to being dominated by long wavelengths in the upper mantle as well
as in the last 500 km above the core–mantle boundary (CMB), as re-
flected in more organized spatial patterns. These patterns have been
confirmed in studies focused on the global 2-D analysis of CMB
diffracted waves (e.g. review Garnero 2000).

On the other hand, the most recent seismological evidence points
to the existence of strong lateral variations in D′′associated with
the borders of the two largest ‘plumes’ (i.e. low-velocity regions)
at the base of the mantle, resolved in all tomographic models.
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Peak-to-peak lateral variations of up to 10 per cent in S veloc-
ity occurring over several hundred km have been found, both on
the border of the African Plume (e.g. Ritsema et al. 1998; Wen &
Helmberger 1998a; Ni & Helmberger 2001) and of the Pacific Plume
(Bréger & Romanowicz 1998; Bréger et al. 1998). Such strong vari-
ations cannot be interpreted in terms of thermal variations alone.
Strong localized variations in P velocity have also been inferred
from the study of precursors to PKP (Vidale & Hedlin 1998; Wen &
Helmberger 1998a) and in S -velocity anisotropy from the study of
SV diff (Vinnik et al. 1998).

Yet, present global waveform modelling approaches rely heavily
on assumptions of weak heterogeneity. While the forward modelling
of traveltimes of body wave phases sensitive to the base of the man-
tle, using standard ray methods, provides helpful insights regarding
the character of lateral heterogeneity, much information is yet to be
gained from the analysis of waveforms. For this purpose, adequate
modelling tools need to be applied.

Given the strong heterogeneity found in the two boundary lay-
ers of the mantle, appropriate tools are needed that will handle
waveform modelling of: (1) the propagation of seismic body and
surface waves in 3-D models with strong lateral variations and in
spherical geometry and (2) the diffracted waves along the core–
mantle boundary. Diffracted waves cannot be handled by ray-based
methods. On the other hand, perturbation methods based on a
normal-mode formalism are well adapted to the spherical geometry,
can handle diffracted waves and allow the computation of Fréchet
kernels for inversion (e.g. Lognonné & Romanowicz 1990; Li &
Romanowicz 1995, 1996; Clévédé & Logonnné 1996; Dahlen et al.
2000). However, the strength of the target lateral heterogeneity,
which would require pushing the perturbation development to rather
large orders beyond the Born approximation, and the relatively
short period of the waves considered (30 s or less), makes this
approach as yet rather impractical for waveform modelling, espe-
cially in the P –SV case (many modes to couple). Another approach
that has been proposed for whole Earth heterogeneous models is
based on the direct solution method (DSM, Geller & Ohminato
1994; Geller & Takeuchi 1995). This method, based on the weak
form of the equations of motions, allows one to compute partial
derivatives of seismograms, and is therefore well adapted for in-
version. Unfortunately, this method is currently only available for
axisymmetric models (e.g. Cummins et al. 1997) and uses the Born
approximation for models without symmetry (Takeuchi & Geller
2000).

There have been some successes in modelling D′′sensitive phases
using hybrid codes, in which the computation in D′′is performed us-
ing a Cartesian finite-difference (FD) scheme, while outside of the
deep mantle, standard 1-D ray methods such as WKBJ (Chapman
1978), Kirchoff (Stead & Helmberger 1988) or generalized rays
(Helmberger 1983), are applied to perform the ray tracing. The
FD part is computationally intensive and the hybrid approach re-
duces the computation time outside of the target heterogeneous re-
gion. Wen & Helmberger (1998b,a) successfully implemented such
a dual scheme, and in particular modelled the effect of the Ultra Low
Velocity Zone (ULVZ) on the PKP and SKS + SPdKS waveforms.
Because the disturbance due to the ULVZ is limited to a small re-
gion of D′′, this type of approach is, from a computational per-
spective, particularly efficient. It is unfortunately not appropriate
for modelling Sdiff waves. First, Sdiff can diffract over more than
20◦epicentral distance, and it is not possible to adequately simulate
diffraction over a curved CMB in the Cartesian FD box.

Over the last few years, much progress has been made in the de-
velopment of numerical methods adapted to spherical geometry and

able to compute waves emanating from a realistic seismic source,
reaching, within reasonable computational time, periods of interest
for teleseismic studies, making no assumptions on the strength of
velocity contrasts, and able to handle interface waves and interface
topography.

Among the possible numerical methods able to solve the wave
equation in general Earth models, the spectral element method
(SEM) has been shown to be particulary efficient and accurate. The
SEM has been introduced in computational fluid dynamics (Patera
1984; Maday & Patera 1989) and applied more recently to the 3-D
elastic equation (Faccioli et al. 1997; Komatitsch & Vilotte 1998).
This method combines the geometrical flexibility of conventional
finite-element methods with the exponential convergence rate asso-
ciated with spectral techniques, and suffers from minimal numerical
dispersion and diffusion. The extension to spherical geometry has
been introduced by Chaljub (2000) and Chaljub et al. (2003), devel-
oping a mesh of the sphere with deformed cubes named the ‘cubic
sphere’ starting from the work of Sadourny (1972) and Ronchi et al.
(1996), and allowing non-conforming interfaces using the mortar
method (Bernardi et al. 1994). The effects of anisotropy, attenua-
tion (Komatitsch & Tromp 1999), rotation and gravity (Komatitsch
& Tromp 2002) have also been introduced. In spite of all the quali-
ties of the method, the main drawback is still the numerical cost. The
method can address corner frequencies between 1/20 and 1/15 Hz
but only with huge amounts of memory (of the order of 100 Gb) and
with a large CPU time, making it still impractical to test numerous
models, as one would want to do in a forward modelling approach,
or compute the wavefield for hundreds of sources in an iterative
global inversion scheme.

A solution to that problem, allowing higher-frequency simu-
lations using smaller machines (smaller memory and less CPU
time), has been introduced with the coupling of the SEM with the
modal solution (Capdeville 2000; Capdeville et al. 2002, 2003).
The idea of this method is to limit the use of the expensive SEM
in regions of the Earth that, depending on the problem studied,
include 3-D heterogeneity, and to use the cheaper modal solu-
tion in regions that can be assumed to be spherically symmetric.
The coupling between the SEM, expressed in the space and time
domain, and the modal solution, expressed in the frequency and
wavenumber domain, is not trivial and requires some original so-
lutions that are explained in detail in Capdeville et al. (2003)(here-
after referred to as ‘Paper 1’). In the spectral element method,
the coupling is introduced via a dynamic coupling operator, a
Dirichlet-to-Neumann (DtN) boundary operator. The operator can
be explicitly constructed in the frequency domain and in the gen-
eralized spherical harmonics basis, using classical modal solution
techniques.

In Paper 1, only one coupling interface was allowed with an ex-
ternal shell of spectral elements over an inner sphere in which the
modal solution is found. The typical application of such a partition-
ing is for a heterogeneous crust over a spherically symmetric mantle
and core. Here we present an extension of the coupled method to
the case of a thin spherical shell of spectral elements ‘sandwiched’
between two modal solutions. A target application of this new devel-
opment is the study of the D′′ layer, which is strongly heterogeneous,
as discussed above. In that case, a layer with 3-D structure at the bot-
tom of the mantle can be used between two spherically symmetric
models. This particular coupling type is not trivial, due to the fact
that the source and the receivers are in the modal solution domain,
as we will show here. We finally present and discuss an example of
simulations, with a 3-D model in the D′′ layer obtained using the
S tomographic model SAW24b16 (Mégnin & Romanowicz 2000)
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Figure 1. The Earth domain Ω (left) is divided into three parts (right), an external shell ΩM2, an internal shell ΩS and an internal sphere ΩM1 separated by two
spherical boundaries Γ2 and Γ1. In this sketch, Γ1 is located on the core–mantle boundary and Γ2 in the lower mantle. We assume that lateral heterogeneities
of the Earth model are only present in ΩS , so that the SEM needs only to be used in that domain and modal solutions in ΩM1 and ΩM2.

and PREM (Dziewonski & Anderson 1981) and some comparisons
with data.

2 P RO B L E M S TAT E M E N T
A N D M E T H O D P R I N C I P L E

We consider a non-rotating Earth Ω of radius rΩ. The equation of
motion to be solved in Ω is

ρ(r)ü(r, t) − Hu(r, t) = f(r, t), (1)

where ρ is the density, u is the displacement field, ü is its second par-
tial derivative with respect to time t, H is the elasto-gravity operator
for a non-rotating spherical Earth (e.g. Valette 1986; Woodhouse &
Dahlen 1978) and f the generalized body force due to the earth-
quake. We assume a free surface boundary condition ∂Ω, and an
initial state of the form u(r, 0) = u̇(r, 0) = 0. We divide the Earth

Figure 2. Left: split view of the six regions. Right: assembled view of the six regions in a spherical shell.

into three parts: an external shell ΩM2, an internal sphere ΩM1 and
an internal shell ΩS sandwiched between them. We name Γ1 the
spherical boundary between the domains ΩM1 and ΩS , and Γ2 the
spherical boundary between the domains ΩS and ΩM2 (see Fig. 1).
Note that if ΩM2 is reduced to 0, we are in the same situation as pre-
sented in Paper 1, that is one external shell over an inner sphere. We
assume that all lateral heterogeneities of the Earth model are local-
ized in the inner shell ΩS , and that the Earth model within ΩM1 and
ΩM2, as well as on Γ1 and Γ2, is spherically symmetric. Depending
on the Earth model considered, the radius rΓi of interface Γi can
be set anywhere between the core–mantle boundary radius and rΩ.
The basic idea of the method is to use the spectral element method
in the heterogeneous part, that is ΩS , and a modal solution in ΩM1

and ΩM2. The latter is well known when the model properties are
only varying radially. The point is that, on the one hand, the spectral
element method is very well adapted to a general 3-D medium but
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is time and memory consuming from a numerical point of view. On
the other hand, the modal solution has a very low numerical cost
in spherically symmetric media. Combining these two methods, we
expect to optimize the numerical cost of wave propagation in Earth
models where, for example, we wish to focus the investigation on
lateral heterogeneities in a given depth range of the mantle, such as
D′′and its vicinity.

2.1 Variational formulation

We first solve the wave equation using the SEM in ΩS . The coupling
with the modal solution in ΩM1 and ΩM2 will then come naturally.
The SEM is a finite-element method that solves the equation of
motion in its variational form, which is the integral form of eq. (1).
In this problem formulation, we seek a solution in V , the set of
square-integrable functions with square-integrable generalized first
derivatives over ΩS . The problem to be solved is: find u(·, t) ∈ V ,
such that ∀t ∈ I = [0, T ], the time duration of the simulation, and
∀w ∈ V

(ρü, w) + a(u, w) −
∑
i=1,2

〈
TΓi , w

〉
Γi

= (f, w) (2)

with (w, ρ u)|t=0 = 0 and (w, ρu̇)|t=0 = 0, where (·,·) is the classical
L2 inner product, the symmetric elasto-gravity bilinear form a (·,·)
expression can be found in Paper 1 and

〈TΓi , w〉Γi =
∫

Γi

(
TΓi · w

)
dx, (3)

where TΓi is the traction on the spherical interface Γi . To solve
eq. (2), we need to know TΓi . As will be shown in Section 2.3, TΓi

can be computed as a function of the incident displacement uΓi on
each coupling interface and this is where the coupling is performed.

2.2 The spectral element approximation

The basic principle of the SEM, which is very close to the classical
finite-element method, is to solve eq. (2) using a high-degree poly-
nomial approximation by elements of functions in V space. In this
method, elements have to be deformed cubes, so a cubic meshing
of the spherical shell has to be found. The ‘cubic sphere’ proposed
by Sadourny (1972) and further extended by Ronchi et al. (1996)
allows such a meshing of a spherical surface by decomposing it into
six regions of identical shape, which can be mapped on to a cube
face. To obtain the meshing of a spherical shell, spherical surfaces
are connected radially (see Fig. 2), where non-conforming inter-
faces are allowed (Chaljub et al. 2003). Each numerical integration
of eq. (2) is performed using the Gauss–Lobatto–Legendre (GLL)
quadrature in each Cartesian direction. The polynomial basis is built
using the Lagrange polynomial associated with GLL points. A de-
tailed description of the spectral element method applied to the wave
equation can be found in Komatitsch & Vilotte (1998) and Chaljub
et al. (2003).

In this paper, the anelasticity of the medium is taken into account
in the SEM following the scheme presented in Komatitsch & Tromp
(1999).

2.3 The Dirichlet to Neumann operator

In this part, we recall results obtained in Paper 1 ignoring for the
moment that the source and the receivers will be in the upper modal
solution domain, ΩM2. This aspect will be examined in the next

section. The continuity of traction and the continuity of displace-
ment, or the normal displacement (depending on whether Γ is a
solid–solid or a solid–fluid interface), through each interface Γi ,
i = 1, 2, have to be assured. Assuming that the solution to the wave
equation (1), without the right-hand side f, is known in ΩMi, if a
boundary condition in displacement is imposed on the interface Γi ,
the stress field can be computed everywhere in ΩMi and, in partic-
ular, the traction on Γi is known. Using the continuity relations of
displacement and traction through Γi , we are then able to construct
an operator Ai that, for a given displacement uΓi on Γi , returns the
corresponding traction that ΩMi applies on ΩS :

Ai : TΓi (r, t) = Ai

(
uΓi (r, t)

)
, (4)

for a solid–solid interface and

Ai : TΓi (r, t) = Ai

(
uΓi (r, t) · n(r)

)
, (5)

for a solid–fluid interface, where n is the normal outward unit vec-
tor to the surface Γi . Form the point of view of ΩS , the boundary
condition on Γi is a Neumann condition (condition in traction) that
depends on a Dirichlet condition (condition in displacement), there-
fore the operator Ai is named a Dirichlet-to-Neumann operator. This
operator allows us to compute eq. (3) knowing uΓi , as for a classical
absorbing boundary problem (e.g. Givoli & Keller 1990; Grote &
Keller 1995; Sánchez-Sesma & Vai 1998).

As shown in Paper 1, the DtN operator is built in the frequency–
generalized spherical harmonic domain (Phinney & Burridge 1973),
in which the solutions of eq. (1) without the right-hand side term
are well known in spherically symmetric models. For each angular
order �, an operator in frequency A�(ω) is found which, due to
the spherical symmetry of the problem, does not depend on the
azimuthal order (m). This operator is not defined for a discrete set
of frequencies ��

d , which correspond to the eigenfrequencies of
ΩMi for the homogeneous Dirichlet problem (no displacement at
the boundary Γi ). Note that if one needs to include attenuation in
the spherically symmetric part of the model, anelasticity is simply
approximated by introducing a complex part in each eigenfrequency

Figure 3. Two rays with very close ray parameters in the homogeneous
sphere with a liquid inclusion showing the wide shadow area between the P
and PKP waves.
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Figure 4. Spectral element mesh used in the homogeneous test. It has eight elements in each horizontal direction in each region and two elements in the
vertical one. The polynomial degree is eight in each direction.
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Figure 5. Vertical component seismograms recorded at 90◦, 110◦, 130◦ and 150◦ of epicentral distance in the homogeneous sphere with a liquid inclusion.
The solid line is the coupled method solution and the dotted line represents the residual × 10 when comparing with the normal-mode summation solution (the
normal-mode summation solution is not represented because there is no visible difference with the coupled method solution).
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of��
d , as is classically done in normal-mode problems (e.g. Takeuchi

& Saito 1972).
Because the SEM is a time–space method, the DtN operator has

to be computed in this domain. The first and most difficult step is
to compute A� in the time domain for each �. First, because of
its singularities at each frequency of �d , this operation cannot be
performed by a traditional fast Fourier transform (FFT). To circum-
vent this problem, the continuous spectrum, on which a classical
FFT can be performed, is separated form the discrete spectrum. The
Fourier transform of the discrete part of the operator can be ob-
tained using the Cauchy theorem, which finally allows us to obtain
the DtN operator in the time domain. The DtN operator is naturally
causal, but in order to be compatible with the SEM time evolution
scheme, it has to be numerically causal. By numerically causal we
mean that the DtN operator in time that is obtained from the DtN
operator in frequency, using the numerical process previously de-
scribed, must be equal to zero before t = 0. If this were not the case,
uΓi (t) would be required at time steps in advance of the current
time step, in order to compute TΓi (t) correctly at the current time
step, which is obviously not possible. Unfortunately, the frequency
window used for the Fourier transform is not infinite (the maximum
frequency possible is the Nyquist frequency), and such a filtering is
not causal. In order to circumvent this second problem, a regular-
ized DtN operator, Ar

�, is used, where Ar
�(ω) is close to zero for the

high frequencies. On such a regularized DtN operator, the frequency
window filtering has no effect and the causality is preserved numeri-
cally. Ar

� is obtained by subtracting from A� an asymptotic operator
C� valid for the high frequency of the DtN operator, which can be
obtained analytically (see Paper 1). With such a regularization, the
expression of the traction in the generalized spherical harmonic
domain is

TΓi ,�,m = Ar
� ∗ uΓi ,�,m + C� ∗ uΓi ,�,m, (6)

where ∗ is the time convolution. As Ar
� is causal, Ar

� ∗ uΓi �,m can be
computed numerically without any problem and it can be shown that
C� ∗uΓi ,�,m can be computed analytically. Mathematically speaking,
A� is not a bounded operator and therefore, the numerical Fourier
transform cannot be performed on it properly. The regularized op-
erator Ar

� is bounded (it goes down to zero for high frequency), and
therefore the numerical Fourier transform can be performed on it
properly, which solves the problem.
After having obtained TΓi ,�,m in time, the second step is to ob-
tain it in space. To do so, a backward Legendre transform, that is
the summation over �and m of coefficients TΓi ,�,m on the general-
ized spherical harmonic basis, has to be performed. The summation
over � has to be numerically truncated after an �max that does not
affect the coupling process (the summation over m is naturally trun-
cated as, for a given �, m must lie between −� and �). To evaluate
this corner angular order �max, the dispersion curve of the surface
waves of the inner sphere for the homogeneous Dirichlet boundary
condition problem can be used. As a matter of fact, with such a
curve, for a given maximum frequency of the source, a maximum
angular order can be found. This maximum angular order corre-
sponds to the maximum angular order that a wave would have in
the inner sphere in the far field of the source. Multiplying this an-
gular order with a ‘safety’ coefficient (Γi can be in the near field
of the source and the medium close to the interface in ΩS can be
strongly heterogeneous), let us say 2, a very good coupling is ob-
tained. Finally, the traction expression which is to be used to evaluate
eq. (3) is

TΓi =
�=�max∑

�=0

m=+�∑
m=−�

(
Ar

� ∗ uΓi ,�,m + C� ∗ uΓi ,�,m

) · Y�,m, (7)

where Y�,m is the generalized spherical harmonic basis.

2.4 Particularity of the coupling due to the ‘sandwich’

The introduction of the ‘sandwich’ geometry has two practical con-
sequences that have to be treated: the source and the receivers are
in the upper modal solution domain.

The resolution and the construction of the DtN operator remains
unchanged in the inner sphere ΩM1, but in the outer shell ΩM2,
we must take into account the right-hand sidefin the resolution of
eq. (1). This is performed by adding a particular solution of eq. (1)
to the general one which gives the following DtN relation:
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Figure 6. Vertical and transverse displacement records at an epicentral
distance of 107◦ in a homogeneous sphere. The top plot for each component
represents the contribution to displacement of the two terms of eq. (9). The
bottom plot presents comparisons with normal-mode summation solutions.
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Ai : TΓ2 (r, t) = A2

(
uΓi (r, t)

) + B(r, t), (8)

in the solid–solid case (the solid–liquid case is similar), where B
is the particular solution term due to the presence of the source in
ΩM2. B is computed using the modal solution of ΩM2 where the
boundary condition on Γ2 is chosen as a homogeneous Dirichlet
condition (no displacement) for practical reasons (see the Appendix
for details).

As receivers are on the free surface of the Earth, they are located
in the modal solution domain ΩM2. We must therefore use the modal
solution to obtain the displacement at the surface. This is performed
using an operator P similar to the DtN operator that continues the
SEM domain solution on the coupling interface Γ2 up to the free
surface in the modal solution domain:

P : uM2(r, t) = P
(
uΓi (r, t)

) + Bd (r, t), (9)

where uM2 is the displacement in ΩM2, Bd is a term similar to B
but in displacement and at the free surface.
All operators A2, B, Bd and P have a discrete spectrum that is a
subset of the spectrum of the spherical shell ΩM2 with a free surface
condition at the surface and a homogeneous Dirichlet condition on
Γ2 but they are not all exactly the same. Indeed, some eigenfre-
quencies corresponding to surface waves do not contribute to the
DtN after a certain frequency depending on the depth of Γ2, and are
therefore not present in the spectrum of A2, B and P . However,
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Figure 7. Vertical (top) and transverse (bottom) displacement records computed by modes summation (solid line) and by the coupled method (dashed line).
The difference between the two solutions time 10 (dotted line) shows a very good agreement.

they are present in the spectrum of Bd . Construction of operators B
and P is detailed in the Appendix.

3 VA L I DAT I O N T E S T S

Before presenting a test of the ‘sandwich’ coupling, we first present
a validation test for a diffracted wave on the coupling interface. A
diffracted wave exactly on the coupling interface is a very difficult
case for this method because such a wave stays on the DtN boundary
for a long time and is therefore very sensitive to any error that
occurs during the coupling process (an even worse case, i.e. Stoneley
waves on the coupling boundary, is discussed in Capdeville 2000).
Furthermore, this kind of wave (Sdiff and Pdiff) is widely used to
study the D′′ layer, and because we do not consider any heterogeneity
in the outer core, the coupling interfaceΓ2 will be set at the CMB and
therefore diffracted waves will propagate on the DtN boundary. It is
therefore crucial to test the accuracy of simulations in this particular
case.

To do so, we use a simple model that is a homogeneous spherical
shell (external radius 6371 km) over a liquid inner sphere (radius
2871 km). The external shell S -wave velocity (β) is 6 km s−1, the
P-wave velocity (α) is 8 km s−1, the inner sphere P wave is set
to 4 km s−1 to create a shadow area for P waves so that Pdiff and
PKP waves do not mix (Fig. 3). The density is everywhere 3000
kg m−3. The source, located at a depth of 1048 km, is an explosion
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(this implies that no SHdiff waves will be generated, but SHdiff is
not a difficult case because for this wave, the boundary is only a
free surface), and the corner frequency is 1/125 Hz. Fig. 4 shows
the spectral element mesh used for that test. We compare synthetics
obtained with the coupled method with normal-mode synthetics at
four different epicentral distances on Fig. 5. The residuals, ampli-
fied 10 times, show a very good agreement, which validates the
coupling in that case and demonstrates that diffracted waves propa-
gating along the coupling interface are computed with a satisfactory
accuracy. More tests of the DtN but non-specific to the sandwich
coupling can be found in Capdeville (2000) or Capdeville et al.
(2003).

To validate the sandwich coupling, we perform a test in a fully
homogeneous sphere with a very deep source. The test is once again
unrealistic geophysically speaking, but has every difficulty, and even
more (the source is not usually so deep), of a realistic case for the
coupling. Furthermore, the normal-mode solution is, in that case,
quasi-analytic and therefore suitable. The source is very deep in
order to minimize surface waves that could hide problems at the
coupling interface. The elastic properties of the sphere are the same
as those of the external shell in the previous test. The different radii
are rΩ = 6371 km, rΓ2 = 3810.5 km and rΓ1 = 2560.5 km. The
spectral element mesh is exactly the same as that in Fig. 4, but, be-
cause of geometrical effects (radii are smaller), the maximum corner
frequency can be higher (1/55 Hz). The source is a strike-slip earth-
quake at 1272 km depth. In Fig. 6, we present the contribution of
the two terms of eq. (9) to the actual seismogram. The term Bd

represents the source contribution in a spherical shell with a rigid

-4 0 4

dln(Vs)(%)

SAW24b16  2850 km 

IU.KBS

GT.BOSA

IC.WMQ

II.TLY

CN.INK
CN.YKW3

US.BW06

US.CBKS

IU.CCM

CN.LMN

Figure 8. Configuration of source and stations used in this example. The background model is the tomographic model SAW24B16 above the CMB. The path
between the source and stations are plotted, and in bold is plotted the part of the path that would sample the D′′ layer in PREM.

boundary condition at the bottom. The reflection of the inner inter-
face can be clearly seen, especially on the transverse component.
The term P ∗ uM2

Γ2
is the contribution of the DtN operator to the

final seismogram. This contribution cancels all the reflections at the
inner interface of the term Bd , to finally obtain a very good match
with the normal-mode summation reference solution. Once again
the accuracy is satisfactory.

Finally, we show in Fig. 7 a comparison with the normal-mode
solution in PREM. The configuration is similar to that in the previ-
ous test, but the source is now 600 km deep and rΓ1 has been set to
3480 km to match the core–mantle boundary. Once again, residu-
als for both vertical and transverse components show a very good
agreement.

4 A N E X A M P L E O F A P P L I C AT I O N :
T H E D ′′ L AY E R

We perform a simulation of one deep event (621 km deep) of magni-
tude 6.8 (1997 September 4, Fiji) using PREM in the top shell, and
the 3-D degree-24 SH model SAW24b16 (Mégnin & Romanowicz
2000), in the 370 km above the CMB. To obtain the P -wave ve-
locity and density heterogeneities, we use simple linear relations,
δρ = 0.4δβ and δα = 0.25δβ. The source mechanism is obtained
from the Harvard CMT catalogue and we have chosen 10 stations
from CNSN (code used on figures: CN), USAF/USGS (GT), GSN-
IRIS/IDA (II), GSN-IRIS/USGS (IU), USNSN (US) and LODORE
(XT) networks (Fig. 8). All epicentral distances lie between 95◦

and 127◦ and we look at ScS waves and S diffracted on the CMB.
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Figure 9. Sketch of the configuration used in this example. The spectral element mesh is represented with four times less elements in each horizontal direction
and four times less GLL points in the vertical direction that there are actually for visibility purpose. In colour in represented the S -wave velocity contrast
compared with PREM from the tomographic model SAW12B16.

The spectral element mesh used has about 12 000 elements and 4 ×
106 integration points (see Fig. 9), which allows a minimum corner
period of 12 s.

We first present synthetics in PREM and SAW24b16 at two
stations (INK and LMN) in Fig. 10. The effect on P waves
(vertical component) is weak at this frequency, but the effect on
Sdiff (transverse component) is noticeable, especially for the ampli-
tude at LMN. This effect should be observable on the corresponding
data.

Our next step is to compare data with synthetics produced in the
3-D model and in PREM for reference. To do so, the station response
and a crude ellipticity correction have been applied to synthetics.
Fig. 11 presents such a comparison for the 10 stations considered.
These 10 stations have been chosen for their representativity when
comparing data and synthetics. Two phases are shown, ScS or Sdiff

and sScS or sSdiff (depending on the epicentral distance). The first
observation is that, for most of the stations and to first order, the
3-D model does a better job than PREM, both on the time delay and
on the amplitude. This is especially true for stations such as LMN

and BOSA at large epicentral distance, where the effect on the am-
plitude is the strongest. Note that slow regions are systematically
associated with higher amplitude than PREM (e.g. YKW3, LMN)
and fast regions with smaller amplitude than PREM (BOSA). The
fact that a tomographic model gives a good result on the amplitude
was not obvious a priori and is a good surprise. However, the 3-D
models explain only the first-order features of the data, and not at
all stations. The time-shift due to the 3-D model is sometimes too
strong (e.g. WMQ) and sometimes both the amplitude and the phase
are poorly explained (e.g. BW06 or TLY). It shows that interesting
work still remains to better explain observed diffracted waveforms,
even at the relatively long periods considered. The second phase,
sSdiff, is poorly modelled. This can be explained by the fact that this
wave spends a significant amount of time in the strongly heteroge-
neous upper mantle near the source, and this heterogeneity is not
accounted for in the model. This shows one of the limitations of our
approach linked to the fact that we do not take into account hetero-
geneities anywhere other than in and above the D′′ layer. Nothing pre-
vents us, however, from progressively incorporating heterogeneity
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Figure 10. Vertical (top) and transverse (bottom) synthetics computed in
PREM and SAW24B16 for two stations. The effect on SHdiff is strong at
large epicentral distance especially on the amplitude (a factor of 2).

at different levels in the mantle, and in particular, from consider-
ing, in the future, two or more shells of strong 3-D structure, as
needed.
Finally, in Fig. 12 we plot time arrivals of ScS or Sdiff phases
computed by linearized ray tracing and by the coupled method us-
ing waveform cross-correlation for a large number of stations. It
shows that in most cases ray tracing and the coupled method have
time residuals of the same sign, but with significant differences
of absolute value. The general trend is that linearized ray theory
overestimates the time residual, which is coherent with the wave
front healing phenomenon (Hung et al. 2001). A more extensive
discussion of this type of comparison will be given in a forthcoming
paper.

This particular simulation was performed on 64 processors of the
IBM machine of the NERSC, it required about 13 Gb of memory
and lasted approximatively 20 h.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented an extension to the coupled spectral ele-
ments/modes method, which allows us to consider a thin spher-
ical shell of spectral elements ‘sandwiched’ between two modal
solutions. This extension provides a way to obtain relatively high-
frequency seismograms at reasonable computation cost to study 3-D
structure in specific shells of the Earth. The accuracy of the method
is checked against normal-mode summation in simple models and
shows satisfactory precision. An important application, as shown
here, is the study of the D′′ layer and its vicinity, where we can reach
corner frequencies under 10 s on moderately large parallel comput-
ers (typically 64 processors and under 20 Gb of memory). Using this
tool, we hope to provide strong constrains on the 3-D heterogeneity
in and above D′′, in well-sampled regions of geodynamical interest,
such as in the region of the Pacific superplume.

The comparison of observed S diffracted seismograms for paths
sampling D′′ across the Pacific, with synthetics computed in an ex-
isting tomographic model in which heterogeneity has been restricted
to the bottom 370 km of the mantle shows surprisingly good agree-
ment, not only in phase, but also in amplitude (in contrast with
PREM synthetics), at least down to a 12 s corner frequency. This
indicates that 3-D effects not accounted for by the theoretical ap-
proximations used in the construction of model SAW24B16 are not
systematically dominant. Notable differences remain, and will be
investigated further. The main limitation of the approach presented
in this paper is of course the fact that the model is not 3-D every-
where, but this is the price to pay to be able to reach interesting
frequencies and not be too restricted in the number of trial models
to run.

Another interesting target of such a method is the inner
core. In that case, the SEM would be used only in the in-
ner core and the modal solution everywhere else. Corner fre-
quencies of 5 s should be within range with the same type of
machine.

Among the possible future developments, it is possible to intro-
duce some 3-D structure in the modal part, such as ellipticity, using
modal perturbations. However, it will not be possible to include gen-
eral 3-D models without falling again in the classical difficulties of
normal-mode perturbation techniques.
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A P P E N D I X : C O N S T RU C T I O N O F
PA RT I C U L A R S O L U T I O N B A N D
R E C E I V E R O P E R AT O R P
The equation to be solved in the frequency domain in ΩM2 is

−ω2ρ(r)uM2(r, ω) − H(r)uM2(r, ω) = f(r, ω), (A1)

with a free surface boundary condition on ∂Ω and a Dirichlet bound-
ary condition on Γ2,

uΓ2 (r, ω) = uS
Γ2

(r, ω), (A2)

where uS
Γ2

is the restriction of displacement on Γ2 in the SEM do-
main ΩS . uΓ2 (r, ω) is the restriction of displacement on Γ2 in the
upper modal solution domain ΩM2. In this appendix, u with no
superscript denotes the displacement in the domain ΩM2.

Taking into account the spherical symmetry of ΩM2, we seek a
solution of the form

u(r, ω) = d�,m(r, ω) · Y�,m(θ, φ), (A3)

where Y�,m is the generalized spherical harmonics tensor (see Pa-
per 1 for details). Three solutions of eq. (A1) without a second
member satisfying the free surface condition are found and they
are denoted by q d�(r , ω) with q = {1, 2, 3}. If we are able to

find a particular solution to eq. (A1) with a second member, dp
�,m(r ,

ω), then the general solution in the frequency–spherical harmonic
domain is

u�,m(r, ω) =
∑

q
qa�,m(ω)q d�(r, ω) + dp

�,m(r, ω), (A4)

where qa�,m(ω) is an excitation coefficient that will be determined
by the boundary condition eq. (A2). To build dp

� we can use mode
summation as is done classically in seismology (e.g. Gilbert 1971;
Woodhouse & Girnius 1982). To build the normal-mode basis to
be used for this purpose, any boundary condition on Γ2 can be
chosen, and for practical reasons, we take a homogeneous Dirichlet
boundary condition. In the following, we denote D� and T � the
tensors defined in the generalized spherical harmonics basis (eα)
by

[D�]
q,α(ω) = q dα

� (rΓ, ω), [T �]
q,α(ω) = q tα

� (rΓ, ω),

and ã�,m is the vector of components [ã�,m]q = qa�,m . Thanks to the
choice dp

�,m(rΓ2,ω) = 0, using eqs (A2) and (A4) we have

ã�,m(ω) = uS
�,m(rΓ, ω) · D�(ω)−1 ∀(�, m, ω), ω �∈ �d

� , (A5)

where �d
� is the set of eigenfrequency where D−1

� is not defined.
Using eq. (A4), its corresponding expression in traction and the
DtN expression, eq. (8), as in Paper 1, we can still write for the DtN
operator

tA�(ω) = D−1
� (ω) · T �(ω) ∀ω �∈ �d

� , (A6)

where t denotes transposition. We have

Bd
�,m(ω) = dp

�,m(r�,ω), (A7)

B�,m(ω) = Tp
�,m(rΓ2,ω), (A8)

where Tp is the corresponding traction to up . To find the operator
P , we use the same process as for the DtN operator to obtain

tP�(ω) = D−1
� (ω) · DS

� (ω) ∀ω �∈ �d
� , (A9)

where [DS
� ]q,α(ω) = q dα

� (rΩ,ω).
To build a particular solution up , we name uq,n,�(r ) and Tq,n,�(r ),

such that

uk(r) = uq,n,�(r ) · Y�,m(θ, φ),

tk(r) = Tq,n,�(r ) · Y�,m(θ, φ),

the eigenfunction in ΩM2 in displacement and its corresponding
traction (on a spherical surface of radius r) associated to the eigen-
frequency ωk with k = (q, n, �, m) where q corresponds to the
type of mode (spheroidal or toroidal) and n is the radial order of
the eigenfrequency. Using classical modal summation and (A8), we
have in the frequency–spherical harmonics domain

B�,m(ω) = g(ω)

[∑
q,n

(uk, f)

ω2 − ω2
k

Tq,n,�

(
rΓ2

)]
, (A10)

where wavelet g is such f(r, t) = g(t)f(r) and the inner product
definition is

(f, g) =
∫

Ω2

f · g dx. (A11)
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In the time–space domain we obtain

B(θ,φ, t) = g(t)∗
∑

k

[
H (t)

sin(ωk t)

ωk
(uk, f)Tq,n,�(rΓ2 )

]
·Y�,m(θ,φ),

(A12)

where ∗ is the time convolution. We also obtain for Bp , in the fre-
quency domain:

Bp
�,m(ω) = g(ω)

[∑
q,n

(uk, f)

ω2 − ω2
k

Uq,n,�(rΩ)

]
, (A13)

and in the time–space domain

Bp(θ,φ, t) = g(t)∗
∑

k

[
H (t)

sin(ωk t)

ωk
(uk, f)Uq,n,�(rΩ)

]
·Y�,m(θ,φ).

(A14)
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