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A B S T R A C T

Simulations of tree population dynamics under past and future climatic changes with time- and space-

discrete models often suffer from a lack of detailed long-term climate time series that are required to

drive these models. Inter- and extrapolation methods which are applied to generate long-term series

differ in terms of whether they do or do not account for spatial correlation of climatic fluctuations. In this

study we compared tree species abundance and migration outcomes from simulations using

extrapolation methods generating spatially correlated (SC) and spatially independent (SI) climatic

fluctuations. We used the spatially explicit and linked forest-landscape model TreeMig and a simple

cellular automaton to demonstrate that spatial correlation of climatic fluctuations affects simulation

outcomes. We conclude that methods to generate long-term climate time series should account for the

spatial correlation of climatic fluctuations found in available climate records when simulating tree

species abundance and migration.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Climate is regarded as the main determinant of species ranges
on broad geographical scales (Pearson and Dawson, 2003;
Rosenzweig et al., 2007; Normand et al., 2011). Many processes
in the life cycle of plants, such as growth, survival and
reproduction, are affected by climatic conditions, whereby long-
term trends as well as climatic fluctuations are influential
(Brubaker, 1986; Laakso et al., 2001; Jackson et al., 2009). Climatic
changes induce changes of ecosystems, including shifts of species
ranges and changes in species compositions (Lyford et al., 2003;
Rosenzweig et al., 2007; Midgley et al., 2007). These changes,
however, seldom occur abruptly but rather slowly, and especially
long-lived ecosystems such as forests show lag effects in their
reactions to climatic changes because of the slow nature of tree
population dynamics (Pitelka et al., 1997; Fischlin et al., 2007; Sato
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and Ise, 2012). Therefore, simulations of such ecosystems need to
be conducted for long time spans.

Tree population dynamics under past and future climatic
changes are often studied with time- and space-discrete models.
Studies range from simulations of single sites (e.g. Bugmann, 2001;
Giesecke et al., 2010) to spatially explicit simulations with and
without spatial linkage of the simulated grid cells (e.g. Lischke et al.,
2013; Hickler et al., 2012). One of the main problems of simulation
studies for long time spans is the availability of climate data. For
simulations of the past often only proxy data for sparse points in
time is available, for example from lake sediments or tree rings. From
such proxy data climate anomalies can be derived, ranging from
1000-year time periods (e.g. Miller et al., 2008; Giesecke et al., 2010)
or approximately 250-year time periods (e.g. Lischke, 2005) to, at the
best, around 10 to 20-year time periods (e.g. Lischke et al., 2013).
Thus, they miss crucial short-term fluctuations. For simulations of
the future, detailed climate projections often only reach until 2100,
which is not sufficient to study slow tree population dynamics
(Bugmann, 2001; Hickler et al., 2012), especially not trends in tree
species migration (Nabel et al., 2013).

Generally, to obtain long-term climate drivers with daily,
monthly or yearly resolution, past and future climate time series
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Fig. 1. Transect through the climatically heterogeneous and fragmented landscape

of the Swiss Alps (210 km � 70 km; grid-cell size 1 km2). Background: digital

elevation model from Jarvis et al. (2008). Colour-gradient: mean value of one of

TreeMigs bioclimate variables – the DDsum>5:5�C (sum of daily mean temperatures

above 5.5 8C) for the simulation years 2071–2100 (see Section 2.1.3). In this study,

the shown transect was used as simulation area in applications of the model

TreeMig. Black cells represent cells where trees cannot grow (non-stockable in

TreeMig), here: solid rock surfaces and large water bodies. The area between the

dashed lines (100th to 120th transect km north) approximately corresponds to the

main bottleneck area of the transect.
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often need to be interpolated or extrapolated. Due to the influence
of climate variability on tree population dynamics, the most
simplistic approaches, such as linear interpolation, or extrapola-
tion by steadily applying mean values, are not appropriate
(Giesecke et al., 2010; Nabel et al., 2013). More sophisticated
inter- and extrapolation methods use selected base periods of
available climate time series to generate climatic fluctuations.
Such methods can directly use the ‘empirical distribution’ given by
the climatic fluctuations that are actually observed in the base
years or can sample from probability distributions derived from
the statistical properties of the base years. Concordantly, Bugmann
(2001) listed three methods applied in forest gap models to
extrapolate climatic conditions, namely (1) cyclically repeating
available records, (2) randomly selecting from available records
and (3) generating random series based on probability distribu-
tions derived from available records. Bugmann (2001) recom-
mended the third approach for the application with forest gap
models. This approach also has been used in various simulations
with the spatially explicit and linked forest-landscape model
TreeMig (see e.g. Lischke, 2005; Epstein et al., 2007; Lischke et al.,
2013; Nabel et al., 2013). In these TreeMig simulations climatic
fluctuations were sampled independently for each single cell of the
simulated area.

Whilst sampling from probability distributions might be
recommended for forest gap models, which simulate single
stands, we question whether it is suitable for models, such as
TreeMig, that simulate a landscape of spatially explicit and linked
cells. When sampling climatic fluctuations independently for
each cell of a landscape, the spatial correlation in the climatic
fluctuations among cells is lost and we hypothesise that this
eventually could influence spatial correlations of simulated
population dynamics. However, biological processes do not
necessarily respond linearly to climate drivers (Laakso et al.,
2001) and spatial correlation in climatic fluctuations therefore
does not automatically have to translate into spatially correlated
biotic responses, particularly not in spatially heterogeneous
environments (Grenfell et al., 2000; Greenman and Benton, 2001;
Currie, 2007). Nevertheless, many studies found that synchro-
nous climatic fluctuations can lead to synchronisations in
population dynamics of various (animal and plant) taxa (Koenig,
2002; Liebhold et al., 2004). Examples for observed synchronised
events in tree population dynamics attributed to spatial
correlations in fluctuations of climatic drivers are synchronised
masting behaviour (Koenig and Knops, 2013), pulses of range
expansion in favourable years (Lyford et al., 2003; Jackson et al.,
2009) and synchronised mortality events in unfavourable years
(Breshears et al., 2005). Sampling random fluctuations indepen-
dently for each cell of a simulation area in order to inter- or
extrapolate a climate driver removes such potential synchronisa-
tions and we hypothesise that this will affect simulated tree
species abundance and migration. Studies on invasive species
already demonstrated the importance of climatic fluctuations
and of static spatial heterogeneity for migrating species
(e.g. With, 2002; Hui et al., 2011). However, the combination,
i.e. spatiotemporal heterogeneity (sensu Melbourne et al., 2007),
has so far not been well studied (With, 2002; Melbourne et al.,
2007; Hui et al., 2011). Furthermore, results of previous studies
on the influence of static spatial heterogeneity are not simply
transferable to the case studied here, because neglecting the
spatial correlation in the fluctuations of a climate driver does not
disturb the underlying spatial heterogeneity given by the mean of
the climate driver.

In summary, the overall research questions are whether
neglecting spatial correlation in climatic fluctuations (1) leads to
a loss in the synchronisation of species abundances and (2) affects
simulated tree species migration.
In this study, we used the intermediate-complexity forest-
landscape model TreeMig to test for effects of spatial correlation in
climatic fluctuations on tree species abundance and migration
outcomes. These tests were conducted with an illustrative example
setup, simulating the northwards migration of a sub-Mediterra-
nean tree species on a transect through the Swiss Alps (Fig. 1). This
example was selected because it proved to be sensitive to different
realisations of TreeMigs bioclimate drivers in previous studies
(Nabel et al., 2012, 2013). The large number of interacting
processes and species parameters in TreeMig (see Lischke et al.,
2006) hampers a detailed analysis of the influence of spatial
correlation in bioclimatic fluctuations on tree species migration.
Therefore, we additionally developed a simple individual-based
cellular automaton focussing on the first steps required for tree
species migration, namely availability of seeds (linked to the
presence of adults), germination and survival to maturity.
Germination and survival to maturity are critical steps, since
juveniles are often more susceptible to climatic influences than
adults (Lyford et al., 2003; Jackson et al., 2009). Furthermore, these
first steps were the primary bottleneck for migration in previous
TreeMig simulations of the illustrative example setup (Nabel et al.,
2013).

2. Methods

2.1. TreeMig

TreeMig is a multi-species, spatially linked and dynamic
intermediate-complexity model simulating forest landscapes
(Lischke et al., 2006). TreeMig’s state variables are height-
structured population densities per species. Local stand dynamics
are represented by seed-bank dynamics, germination, growth,
death and seed production (Lischke et al., 2006; Lischke and Löffler,
2006). The spatial linkage among cells is realised via seed dispersal
applying a deterministic dispersal kernel composed of two
negative exponentials that are parameterised according to
dispersal properties of the simulated species (Lischke and Löffler,
2006). TreeMig accounts for inter- and intra-specific competition
for light by modulating the local stand dynamics according to light



Table 1
Influence of the three bioclimate variables used in TreeMig on TreeMig’s processes. All listed processes are additionally influenced by inter-specific competition. For a detailed

documentation of TreeMig’s processes see (Lischke et al., 2006).

DDsum>5:5�C
a Min. WiTempb Drought severity

Germination Threshold, absolute Threshold, absolute –

Mortality Threshold, multiplicative thinning effect – Threshold, multiplicative thinning effect

Growth Asymptotic – Linear decay with threshold

a Sum of daily mean temperatures above 5.5 8C.
b Minimum winter-temperature.

J.E.M.S. Nabel et al. / Ecological Complexity 20 (2014) 315–324 317
availability (Lischke et al., 2006). Due to the represented processes,
TreeMig has the rare advantage of simultaneously allowing for
explicit simulation of tree species migration and of inter-specific
competition (Lischke et al., 2006; Nabel et al., 2013).

2.1.1. Influence of bioclimate variables in TreeMig

TreeMig simulations are driven by three annual bioclimate
variables: the sum of daily mean temperatures above 5.5 8C
(DDsum>5:5�C), the minimum winter temperature (Min. WiTemp)
and an index representing the severity of drought events (Drought

severity). These bioclimate variables were derived from observed
(1901–2000) and projected (2001–2100) monthly climate data.
DDsum>5:5�C and Min. WiTemp were derived from monthly average
temperatures and Drought severity from monthly average tempera-
tures, monthly precipitation sums, water storage capacity as well as
slope and aspect of each simulation cell. A detailed description and
data sources are given in the electronic supplementary material
(ESM). The three bioclimate variables influence different TreeMig
processes (see Table 1). For successful germination Min. WiTemp and
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Fig. 2. Comparison of the applied extrapolation methods on the example of the bioclimate v

bioclimate in a year is sampled independently for each cell of the simulation area. With th

drawn each year from the base years, i.e. the spatial arrangements and therefore the spatial

two methods result in dramatic differences in the spatial arrangements of the deviation fro

(panel a: SI, panel d: SC) for the transect through the Swiss Alps (see Fig. 1). DDsum>5:5�C t

disrupted for SI drawing (see time series in panel b compared to e and scatter plot with half

over all transect cells resulting from simulations with SI drawing are always close to zero (p

other out. For SC drawing, on the other hand, the average residuals over all transect cells
DDsum>5:5�C need to exceed a species-specific threshold. The
maximum possible annual growth of a species is asymptotically
influenced by DDsum>5:5�C (Rickebusch et al., 2007) and decays as a
function of Drought severity (Lischke et al., 2006). Mortality is
directly influenced when DDsum>5:5�C or Drought severity exceed a
species-specific threshold and indirectly influenced when growth is
depleted (Lischke et al., 2006).

2.1.2. Methods to extrapolate TreeMig’s bioclimate drivers

In previous TreeMig versions, bioclimate time series were inter-
or extrapolated by sampling the bioclimate for each year and each
cell independently from probability distributions (Lischke et al.,
2006). These probability distributions were derived from a selected
base period (see e.g. Lischke, 2005; Epstein et al., 2007; Lischke
et al., 2013). Thereby the DDsum>5:5�C, for example, was
approximated with an independent normal distribution for each
cell of the simulation area (see e.g. Lischke et al., 2006; Nabel et al.,
2013). For this study TreeMig (TreeMig-Netcdf 2.0) was equipped
with two additional methods, which both sample uniformly from
ariable DDsum>5:5�C. With the first method – spatially independent (SI) drawing – the

e second method – spatially correlated (SC) drawing – a complete bioclimate map is

correlation of the bioclimate found in the drawn base year is directly carried over. The

m the mean of the base years, as illustrated with the five generated DDsum>5:5�C maps

ime series for single cells have comparable distributions, however, their correlation is

-transparent markers and histograms in panel c compared to f). The average residuals

anel b) because the random fluctuations drawn for the single cells tend to cancel each

reflect the interannual variability found in the base years.
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Neighbourhood

1. 2. 3.

Empty
(agei = NAN)

a b

seedsourcesi ≥ sthresh
 & envi ≥ gthresh

agei = agemat

envi ≤ mthresh
(envi ~ N(0, σ))

Mature
(agei ≥ agemat )

Juvenile
(agei < agemat )

Fig. 3. Schematic of the cellular automaton (CA). Each cell of the CA can be in one of

three different states: empty, juvenile and mature (panel a). A transition from

empty to juvenile has two prerequisites: (1) the number of seed providing sources

seedsourcesi, i.e. the number of mature cells in the selected neighbourhood (panel

b), needs to exceed the threshold sthresh and (2) the environmental conditions envi,

which are drawn from a normal distribution with mean 0 and standard deviation s,

need to exceed the germination threshold gthresh. If the environmental conditions

envi fall below the mortality threshold mthresh while a cell is in the state juvenile its

state changes back to empty. A transition from juvenile to mature happens when

the age agei of the cell exceeds agemat. A mature cell stays mature for the rest of the

simulation time. Simulations were conducted with three different neighbourhoods

(panel b).
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the empirical distribution found in the base period, i.e. from the
bioclimatic values that actually occur in the base years.

Spatially independent drawing (SI). With this method, the
bioclimate of a year is sampled independently from the empirical
distribution found in the base years for each cell, i.e. for each cell
one base year is drawn (Fig. 2a). This base year is used for all
bioclimate variables in the cell.

Spatially correlated drawing (SC). When selecting this method, a
complete bioclimate map is drawn each year from the base-year
set and its values are used for all cells of the simulation area
(Fig. 2d) and all bioclimate variables.

SI drawing is a simplification of drawing from probability
distributions because sampling from probability distributions also
allows values outside of the range of the empirical distribution,
i.e. outside of the range of the values that actually occur in the base
years (Bugmann, 2001). We introduced this simplification to
exclude effects solely caused by extreme values, which were not
contained in the empirical distribution but were possible when
drawing from derived probability distributions. Such effects could
else have interfered with effects of spatial correlation in the
bioclimate variables when comparing the simulation results for
different extrapolation methods.

2.1.3. TreeMig simulation setup

The effects of spatially correlated fluctuations in TreeMig’s
bioclimate drivers on simulated species abundance and migration
were studied with an illustrative example. We simulated the
northwards migration of the sub-Mediterranean tree species
Ostrya carpinifolia Scop. (European Hop Hornbeam) in a warming
climate on a 210 km � 70 km simulation transect (grid-cell size of
1 km2) through the Swiss Alps (Fig. 1). This example was chosen
because it proved to be sensitive to different realisations of the
bioclimate time series in previous simulation studies (Nabel et al.,
2012, 2013).

For this study, outcomes of simulations applying the two
bioclimate extrapolation methods SC and SI were compared.
Simulations with SI and SC extrapolation started in the simulation
year 2100 from the same model state, i.e. with the same values in
the state variables, and used the same set of bioclimate base years
(2071–2100). The generation of the bioclimate base-year set and
the model state in 2100 follow the simulation setup as described
by Nabel et al. (2013) (summarised in ESM A). The climate time
series used to derive the bioclimate driver showed no consistent
signal of temporal autocorrelation (see ESM A.1.3). Therefore,
temporal autocorrelation was not examined in this study, although
its influence on population dynamics has been widely discussed
(e.g. Schreiber and Ryan, 2011; van de Pol et al., 2011).

Simulations were run up to the year 3000 and 100 repetitions
were conducted for each of the two extrapolation methods and for
two different species parameter sets for the focal species. These
two species parameter sets represent the moderate to optimistic
range of plausible species parameters for O. carpinifolia (see ESM
A.2) and were selected because they resulted in a successful
migration through the simulation transect in a previous study
(Nabel et al., 2013).

In each simulation we tracked the biomass of O. carpinifolia and
the sum of the biomass of all simulated species (see ESM A.2). For
each cell of the simulation area these output variables were
recorded per century, and their annual development was only
tracked for selected single cells and as a sum over the entire
transect. As an indicator for the spread of O. carpinifolia we
recorded the annual development of its northernmost occurrence
(NO in transect km – counted from the southernmost point of the
transect), i.e. its momentary spread distance. In this paper, figures
with maps of the transect were created with Paraview (Ahrens
et al., 2005) and graphs with Matlab 11.
2.2. Cellular automaton

2.2.1. Structure of the cellular automaton

For this study we developed a single-species cellular automaton
(CA). Each cell of the CA can be regarded as an abstract
representation of one individual or one small stand of same-aged
individuals of the focal species. A cell can be in one of three states:
empty, juvenile or mature (Fig. 3).

In TreeMig, germination presupposes that bioclimate influ-
ences exceed certain species-specific thresholds (Table 1). There-
fore, in the CA, a cell i changes from empty to juvenile only when
the environmental conditions (envi drawn from a normal
distribution with mean 0 and standard deviation s) exceed a
specified germination threshold (gthresh). Additionally, the number
of seed providing sources for cell i (seedsourcesi), i.e. the number
of mature cells in the simulated neighbourhood (neighbourhood –
Fig. 3b), needs to exceed a threshold (sthresh). Thus, the parameter
sthresh controls the incidence and the strength of positive density
dependency. Moreover, because cells in the CA do not differ in
terms of size, age or fitness, they also do not differ in the number of
seeds they produce. Thus, the number of seed providing sources
alone is used as a proxy for propagule pressure.

Transition from juvenile to mature happens when the age (agei)
of the cell exceeds agemat, i.e. when the individual survived in the
state juvenile for this number of iterations. If the environmental
conditions (envi) fall below the mortality threshold (mthresh) while
the cell is in the state juvenile its state changes back to empty. After
reaching the mature state, a cell stays in this state for the rest of the
simulation time and can provide seeds to cells in the simulated
neighbourhood (Fig. 3b). Mortality was implemented not to affect
mature individuals, because mortality for adults would have
required an independent environmental threshold, since juveniles
and adults often have different sensitivities to climatic influences
(Lyford et al., 2003; Jackson et al., 2009). Furthermore, for
migration, the development on the range limits is anyway more
important than population fluctuations (i.e. mortality of adults) in
parts of the simulation area far from the front (Melbourne et al.,
2007).

In summary, the CA incorporates stochasticity for transitions
between empty and juvenile (germination and mortality). The
fluctuating environmental influence is implemented as a normal
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PROGRAM CA
SET age (agei) for each cell to NAN
FOR each time step
 IF spatially correlated (SC) drawing
  CALL draw environment (envi) for all cells
 END IF
 FOR each cell
  IF spatially independent (SI) drawing
   CALL draw environment (envi) for this cell
  END IF
  IF agei < agemat AND envi ≤ mthresh
   SET agei to NAN
  ELSEIF agei == NAN AND envi ≥ gthresh
   SET seedsourcesi to zero
   FOR each other cell j in neighbourhood
    IF agej ≥ agemat
     INCREMENT seedsourcesi
    END IF
   END FOR
   IF seedsourcesi ≥ sthresh
    SET agei to zero
   END IF
  ELSEIF agei ≠ NAN
   INCREMENT agei
  END IF
 END FOR
END FOR

Fig. 4. Pseudocode of the cellular automaton. State variables are printed in bold,

parameters in italic type.
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distribution with mean 0 and standard deviation s. The two
different approaches to draw environmental influences were
implemented such that in case of spatially correlated (SC) drawing
only one pseudo-random number is drawn for the entire area,
whilst in case of spatially independent (SI) drawing an indepen-
dent pseudo-random number is drawn for each cell. A pseudocode
of the CA is given in Fig. 4. A vectorised version of the CA was
implemented in Matlab 11 (see ESM C).

2.2.2. CA simulation setup

In accordance with the TreeMig simulations, a northwards
migration was simulated with the CA. Simulations were conducted
on a grid with 50 cells in west-east and 200 cells in north-south
direction with cyclic and absorbing boundary conditions, respec-
tively. The lowest two rows were initialised with the state juvenile:
agei = 1(i = 1, . . ., 100). The mean environmental influence of all
cells of the simulation area was assumed to be zero. In case of SC
drawing the simulation area was thus spatially homogeneous and
only fluctuated among iterations.

Simulations were conducted for different combinations of
parameter values (Table 2). For both methods to draw environ-
mental influences each combination was simulated with 100
repetitions (in total 480,000 runs). In each of 100 iteration steps the
Table 2
Parameters used for simulations with the cellular automaton and their function. The first fi

s – determines the variability of the environmental fluctuations.

Parameter values Function

agemat {1, 3, 5, 10} Iterations after which a

gthresh {0, 1, 2, 3, 4} Germination threshold (

frequent germination, la

mthresh {�4, �3, �2, �1, 0} Mortality threshold (�:

infrequent deaths, large

sthresh {1, 3, 5, 10} Determines the number

incidence and the stren

neighbourhood {1, 2, 3} Determines the neighbo

s {1, 2} Standard deviation of th

the ESM for example hi
northernmost occurrence was tracked (in number of rows from the
southernmost row including the lowest two rows).

3. Results

3.1. TreeMig simulations of tree species abundance

Despite the strong synchronisation of bioclimatic fluctuations
(Fig. 2d–f), simulations with SC extrapolation only showed partial
synchronisation of the simulated biomass, i.e. residuals of the same
colour in Fig. 5c. However, where fluctuations of the biomass of O.

carpinifolia were synchronised in simulations with SC extrapola-
tion this synchronisation was disrupted in simulations with SI
extrapolation (Fig. 5a). In addition to the maps shown in Fig. 5 we
provide further analyses of biomass correlations over time for
selected single cells in the ESM (Figs. B.1 and B.2).

The biomass sum of O. carpinifolia (Fig. 5b and d) over the whole
transect showed similar effects to the transect mean of the
bioclimate driver (Fig. 2b and e): for simulations with SI extrapola-
tion the sums were nearly invariant over time and among
realisations (Fig. 5b) – apart from the biomass increase of O.

carpinifolia due to its northwards migration. For simulations with SC
extrapolation, on the other hand, the biomass of O. carpinifolia varied
greatly (20-55 kt – Fig. 5d). The same effects were observed for the
sum of the biomass of all simulated species (see ESM Fig. B.3).

3.2. Simulations of tree species migration

3.2.1. Simulations with TreeMig

Northernmost occurrences among simulations with SI and SC
extrapolation and among their repetitions (Fig. 6) diverged when
O. carpinifolia entered the main bottleneck area (approximately at
the 100th transect km north, Fig. 1). For both extrapolation
methods, simulations with the moderate, less favourable parame-
ter set for O. carpinifolia (Fig. 6b) resulted in slower migration rates
and a higher variability in the northernmost occurrences among
the 100 repetitions than simulations with the optimistic parameter
set (Fig. 6a). In simulations with the optimistic parameter set,
trajectories of the northernmost occurrence were almost parallel
for all runs, i.e. they have the same migration speed, aside from two
bottleneck situations (Fig. 6a).

The distributions of the northernmost occurrence in the
simulation year 3000 resulting from repetitions with SC extrapo-
lation and SI extrapolation are significantly different: for both
species parameter sets, the year-3000 distribution mean for SI
repetitions does not fall into the interquartile range of the
distribution of SC repetitions (Fig. 6). SC repetitions showed a
variability approximately 1.2-fold and 1.5-fold the variability of SI
repetitions for the moderate parameter set and the optimistic
parameter set, respectively.

Differences in the time points when O. carpinifolia passed the
bottleneck situation of the simulation area led to large differences
ve parameters are the species parameters of the focal species. The sixth parameter –

cell in the state juvenile changes to the state mature

�: positive influence of environmental variability; small values (close to 0) imply

rge values infrequent germination)

negative influence of environmental variability; small values (close to �4) imply

values frequent deaths)

of required seed sources to achieve a successful germination and therefore the

gth of positive density dependency

urhood that a mature cell provides seeds for (see Fig. 3b)

e normal distribution used to represent environmental fluctuations (see Fig. B.5 in

stograms)
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Fig. 5. Abundance of O. carpinifolia (Oc) resulting from TreeMig simulations for different runs with the two extrapolation methods: spatially independent (SI) and spatially

correlated (SC) drawing and the optimistic parameter set for O. carpinifolia. Depicted are maps for the simulation years 2800, 2900 and 3000 of simulated biomass residuals (t/

ha) after subtracting the biomass resulting for the year 2100, from when on the bioclimate time series were extrapolated. For both, SI (panel a) and SC drawing (panel c), maps

show the run with the maximum and the run with the minimum spread distance of O. carpinifolia in the simulation year 3000, i.e. the runs in which O. carpinifolia expanded

most and least, respectively. The maps from simulations with SC drawing show a synchronisation of species abundances (accumulation of negative (blue) or positive (red)

residuals), as opposed to maps from simulations with SI drawing in which no synchronisation is visible. Discrepancy of SC-runs and SI-runs get particularly clear when

comparing the transect sums of the simulated biomass for O. carpinifolia for 1900–3000. The transect sum resulting from SI-runs (panel b) is nearly invariant over time and

among realisations. For SC-runs (panel d), by contrast, the transect sum shows much larger and more realistic variability over time and among realisations. Black lines show

the run with the maximum and minimum spread distance, respectively. Grey lines in the background are results from all 100 runs and the dashed red line represents the

running mean over these 100 runs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Comparison of spread distances resulting from TreeMig simulations with

spatially correlated (SC) and spatially independent (SI) drawing of bioclimate

influences. Depicted are northernmost occurrences (NO in transect km north,

smoothed over 10 years) in the simulation years 2100–3000 resulting from 100

repetitions with the two drawing methods and for two different species parameter

sets for O. carpinifolia. (Panel a) Optimistic parameter values. (Panel b) Moderate

parameter values (* with the optimistic parameter for the required DDsum>5:5�C,

see ESM A.2). The box plots on the right side of each panel depict the NO-

distribution in the simulation year 3000 resulting from the 100 repetitions for each

drawing method. For both parameter sets the NO in the simulation year 3000 show

faster migration for and less variability among runs with SI drawing than with SC

drawing. Box edges represent the interquartile range, whiskers extreme data points

and crosses outliers. The black dashed lines mark the main bottleneck area of the

transect (see Fig. 1).
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in the spatial spread of O. carpinifolia. Differences between the runs
with the maximum and the minimum spread distances in the
simulation year 3000, for example, are much smaller in simula-
tions with SI than with SC drawing (e.g. compare differences
between SI maps in panel a and SC maps in panel c in Fig. 5).

3.2.2. Simulations with the CA

Whether the migration speed was higher in runs with SC or SI
drawn environmental influences in the CA simulations depended
on the species parameter values (see e.g. Fig. 7). For most of the
simulated parameter sets the simulated migration was on average
faster in runs with SI than in runs with SC drawn environmental
influences (for summary statistics of all simulated parameter
combinations see Table B.1 in the ESM). Only for some of the
parameter sets with a positive density dependence (sthresh > 1) and
small to intermediate neighbourhood (neighbourhood 1 or 2)
migration was on average slower for SI-runs (see e.g. Fig. 7c). In
situations with minor environmental constraints (mthresh close to
�4 and gthresh close to 0) migration speed for good dispersers
(neighbourhood 2 or 3) was on average equal in SC- and SI-runs (see
e.g. Fig. 8). Overall, variations in the environmental thresholds led
to comparable effects among simulations with SI and SC drawing
(Fig. 8 and ESM B.2.3).
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Fig. 7. Comparison of spread distances resulting from simulations with the cellular

automaton (CA), with spatially correlated (SC) and spatially independent (SI) drawing

of environmental influences. Depicted are northernmost occurrences (NO in number

of rows, smoothed over ten iterations) resulting from 100 repetitions for each of the

two drawing methods and four different parameter sets. The four parameter sets

differ in the applied values for the age of maturity (agemat), the required number of

seed sources (sthresh) and the mortality threshold (mthresh). All parameter sets were

simulated with germination threshold gthresh = 0, neighbourhood 2 (Fig. 3) and

standard deviation s = 1. The first two parameter sets (panel a, b) were selected

because their migration outcomes visually resemble the TreeMig outcomes for

simulations of the migration of O. carpinifolia (Fig. 6). The two other parameter sets

(panel c, d) show examples for the range of possible results within the simulated

parameters (Table 2). The box plots on the right side of each panel depict the

distributions of northernmost occurrences resulting from the 100 repetitions in the

100th iteration for each of the two extrapolation methods. Box edges represent the

interquartile range, whiskers extreme data points and crosses outliers.
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Fig. 8. Mean and interquartile range (IQR) of the northernmost occurrences (NO in

number of rows) in applications of the cellular automaton as a function of all values

simulated for the mortality threshold (mthresh) and the germination threshold

(gthresh). Depicted are the mean (panel a and b) and the IQR (panel c and d) of the NO

in the 100th iteration, calculated from 100 repetitions with neighbourhood 2 (Fig. 3),

maturity age agemat = 5, required number of seed sources sthresh = 1 and standard

deviation s = 1 for the spatially independent (SI, panel a and c) and the spatially

correlated (SC, panel b and d) drawing. The red crosses in the surface plots depict

the parameter combination shown in Fig. 7d.
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Whilst the number of required seed sources (sthresh) had a strong
effect on simulations with SI drawn environmental influences, this
parameter had weaker effects on SC-runs (e.g. compare Fig. 7a with
Fig. 7c). This is intuitive, because in SC-runs the environment in
each iteration is the same for all cells and, therefore, same-aged
cells are perfectly synchronised. Thus, if a row contains one mature
cell, then all cells in this row are mature (see the ESM for a
visualisation example).

For many parameter sets the variability in spread distances
among SI-runs was very low and, in particular, for most simulated
parameter sets lower than among SC-runs (see Fig. 7, Fig. 8 and
ESM B.2).

4. Discussion

The results of the presented TreeMig simulations confirmed
that tree species abundance and migration outcomes are
influenced by the spatial correlation of climatic fluctuations.
Simulations with the simple cellular automaton, furthermore,
affirmed that the different methods to generate fluctuations in the
model driver can lead to large differences in migration speed and
variability among runs with the same set of species parameters.

4.1. Simulated tree species abundance

The ubiquitous synchronism of the fluctuations in the
bioclimate driver in TreeMig simulations with SC extrapolation
(Fig. 2) did not lead to an equally ubiquitous synchronism in
simulated tree species abundances (Fig. 5). This was expected,
because the synchronised fluctuations are only superimposed on
the spatially heterogeneous mean bioclimate influences (Fig. 1). As
already stated in the introduction, this underlying spatial
heterogeneity is very important, because population dynamics –
in models like TreeMig and in natural systems – can be non-linear
(Laakso et al., 2001). Thus, the synchronised fluctuations in the
driver do not have to result in synchronised biotic responses
(Greenman and Benton, 2001; Currie, 2007). In fact, species
abundance at a certain point in time depends on many factors: the
actual climatic influence (mean and superimposed fluctuations),
species sensitivities to climatic influences and previous abundance
of the species itself and of other species.

Besides synchronised temporal fluctuations of model drivers,
dispersal has been discussed as another important factor
synchronising species abundances (e.g. Ripa, 2000; Liebhold
et al., 2004; Bahn et al., 2008). The low degree of correlations in
simulated species biomass among neighbouring single cells in
simulations with SI extrapolation (Fig. 5a) and the strong
similarities of biomass distributions among simulations with SC
and SI drawn fluctuations in single cells over time (see ESM Fig. B.2)
indicate that dispersal did not lead to a strong synchronising effect
in the presented TreeMig simulations. On one hand, this might be
due to the weak spatial linkage in TreeMig caused by a strong seed
density regulation (see Lischke and Löffler, 2006) which
diminishes the possible impact of large amounts of dispersed
seeds. On the other hand, dispersal might be less important in
synchronising plant abundances than in synchronising abun-
dances of highly mobile taxa with low numbers of offspring, such
as large animals (Bahn et al., 2008). Tree species, in particular,
usually disperse by seeds, which subsequently are entirely subject
to the local dynamics in the new environment.

Even though simulations with SC extrapolation did not show
ubiquitous synchronism in species abundances, they showed
partially synchronised species abundances. Comparisons between
simulations with SC and SI extrapolation revealed greater
synchronism in species abundances in simulations with SC
extrapolation than in simulations with SI extrapolation (Fig. 5).
In simulations with SI extrapolation nearly all climatically possible
situations are experienced in one year, due to the large number
(210 � 70) of transect cells with independently drawn bioclimatic
fluctuations. Thus, applying the SI extrapolation method induced a



J.E.M.S. Nabel et al. / Ecological Complexity 20 (2014) 315–324322
blurring effect, i.e. biomass maps simulated for all years and all
repetitions with SI extrapolation look almost identical in the coarse
view (Fig. 5). This blurring effect was particularly visible when
summing the biomass over the entire transect. Simulations with SI
extrapolation resulted in biomass sums that were nearly invariant
over time and among repetitions for O. carpinifolia (Fig. 5). Large-
scale fluctuations in the biomass that were observed in simulations
with SC extrapolation – and are common in natural systems – were
missing. This effect was also observed for the sum of the biomass of
all simulated species (see ESM). The observed lack of variability can
be explained via the central limit theorem (CLT), which states that
sums of independent random variables will converge as long as
they are not dominated by a small number of values (Spanos,
1999). The applicability of the CLT is supported by the fact that the
moments of the biomass distribution over time are bounded and
that the biomass in each cell is only a small fraction of the total.
However, even in the SI simulations, biomass values in individual
cells are not strictly independent variables, because of the
underlying mean bioclimate (Fig. 1) and filter effects (Table 1),
and because of the spatial linkage due to seed dispersal.
Furthermore, the simulated biomass in each cell will be temporally
correlated. Nevertheless, this lack of strict independence did not
prevent convergence in the distributions of the transect sums in
the SI simulations.

Overall, the results demonstrated that the SI method, which
neglects spatial correlations in the bioclimatic fluctuations, led to a
loss in the synchronisation of simulated tree species abundances.

4.2. Simulated tree species migration

Because of the large number of species parameters and
interacting processes in TreeMig, no experiments were conducted
in addition to the example setup. In order to enable a more detailed
analysis, instead, a simple cellular automaton (CA) was developed.
This CA abstracts from several processes and drivers represented in
TreeMig. Each cell of the CA represents one individual (or cohort)
which can be in one of three states. Thus, in contrast to TreeMig the
CA has a discrete state space and the individuals do not have any
attributes, such as fitness or height. Accordingly, there is no
feedback between the environmental influences experienced by an
individual and its contribution to future colonisations in the CA,
which in TreeMig is realised via seed numbers proportional to tree
heights (see Lischke et al., 2006). Due to this lack of the feedback in
the CA, the number of required seed sources (sthresh) is used as a
proxy for propagule pressure, covering effects of species-specific
differences in seed production.

Another important difference between the CA and TreeMig is
that TreeMig simulations are driven by three bioclimate variables.
These variables have different influences on the simulated
processes and thus represent different filters (sensu Laakso
et al., 2001) that can interfere with each other. The CA, in contrast,
was only equipped with one environmental driver. The discrete
nature of the CA, moreover, only allows for thresholds and not for
other filter types. Whilst germination is implemented as a
threshold in TreeMig, mortality only has a threshold effect if the
population falls below a minimum density (see ESM A.3) and
otherwise has a multiplicative thinning effect. The influence of the
parameter mthresh in CA simulations therefore might be too strong
compared to mortality in TreeMig simulations. Finally, the
simulation area used for TreeMig simulations has a high
background heterogeneity in the bioclimate variables. As dis-
cussed in Section 4.1 this background heterogeneity can strongly
influence species abundance, which in turn influences migration.
In the CA simulations such background heterogeneity effects were
neglected. In particular, we assumed that all cells in the CA were
potentially inhabitable, and thus neglected potentially important
effects caused by fragmentation (see e.g. Hof et al., 2011; Nabel
et al., 2013).

Nevertheless, comparisons between simulations with the CA
and with TreeMig demonstrate that observed trends in the
northernmost occurrences simulated with TreeMig can be
approximated by simulations with the CA (Fig. 6a and b compared
to Fig. 7a and b). TreeMig simulations of the optimistic parameter
set for O. carpinifolia showed nearly parallel trajectories outside of
critical conditions. In CA simulations such behaviour would
correspond to situations in which neither the threshold for
required seed sources nor one of the environmental thresholds
would be limiting (i.e. small values for the germination and the
mortality threshold). In such cases, no big differences between SC
and SI drawn environmental influences were observed (see e.g. the
farthest left corner in the surface plots Fig. 8). To represent the
migration outcomes of the moderate, less favourable parameter set
for O. carpinifolia, more severe environmental thresholds were
required in the CA simulations. This reflects the limitation by
means of the bioclimate in the main bottleneck area in TreeMig
simulations and the importance of interannual variability in the
bioclimate in this area (see Nabel et al., 2013). The CA surface plots
(e.g. Fig. 8) demonstrated this intuitive response to the applied
environmental thresholds, which is consistent for the two
extrapolation methods and throughout all applied parameter sets
(for further surface plots see ESM).

Due to the small number of processes and in particular the
small number of species parameters, the CA enabled a more
detailed analysis of the influence of spatial correlation in the
environmental fluctuations on migration. Simulations with the CA
showed a broad range of possible migration outcomes for the
different parameter sets (Fig. 7). Results of the CA demonstrate that
simulations with the same parameter set can show different
behaviour for SC and for SI drawn environmental influences. The
tendency that SI-runs lead to faster migrations than SC-runs – as
long as there is no strong positive density dependence – is
intuitive. The environment in SC-runs only fluctuates among
iterations but not among cells, i.e. the simulation area has a
homogeneous environment in each iteration. Therefore, if the
drawn environment falls below the mortality threshold in a SC-
run, all cells in the juvenile state switch to the empty state, whilst
mortality in SI-runs only affects single cells. Additionally, SC-runs
only enable colonisation events in favourable iterations (exceeding
the germination threshold). SI-runs, in contrast, potentially
provide a colonisation option in each iteration as long as the
number of seed sources is sufficiently high (exceeding the
threshold for required seed sources), i.e. if propagule availability
coincides with good conditions (cf. findings reviewed by Mel-
bourne et al. (2007)). Whenever there is a strong positive density
dependence, colonisation of a cell is dependent on the number of
mature cells in the specified neighbourhood. In such cases,
correlation in the environment is favourable, i.e. migration is
faster in SC-runs, which is in agreement with the simulation results
by McInerny et al. (2007). Overall, simulation results of the CA
demonstrated that spatial correlations in the environmental driver
can have promoting as well as inhibiting influences on the
migration speed, depending on the simulated species traits. The
two extrapolation methods can thus not simply be used
interchangeably when simulating migration.

4.3. Methods to inter- and extrapolate bioclimate time series

In TreeMig simulations, spatially correlated (SC) fluctuations in
the bioclimate driver were generated sampling uniformly from a
base-year set and used for all cells of the simulation area. This
method resembles the often applied method to cyclically repeat a
set of base years (e.g. Hickler et al., 2012; Sato and Ise, 2012),
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however, without the deterministically fixed temporal pattern. A
fixed temporal pattern can lead to an incomplete or biased
representation (Nabel et al., 2013), particularly in cases without a
consistent signal of temporal autocorrelation, as in the current
study (see ESM A.1.3).

The SC method was compared to a method generating spatially
independent (SI) bioclimatic fluctuations, drawing each year and
each cell uniformly from the empirical distributions found for
single cells. Drawing directly from the empirical distributions is a
simplification of drawing from derived probability distributions,
which is the method originally suggested to be revisited in this
study. This simplification was made in order to prevent effects of
extreme values interfering with the effects of spatial correlation in
the bioclimate driver. However, observed effects on the spatial
arrangements of simulated species abundances will equally occur
when drawing from derived probability distributions. In the CA
simulations the environmental influence was again simplified and
fluctuations were solely drawn from prescribed normal distribu-
tions with zero being the expected value. Using a normal
distribution was motivated by the fact that (detrended) annual
temperatures and derived bioclimate influences are often repre-
sented by normal distributions (Schär et al., 2004; Lischke et al.,
2006). To obtain a spatial correlation in the driver of the CA
simulations, only one pseudo-random number was drawn for the
whole simulation area.

The results of this study demonstrated that drawing climatic
fluctuations independently for single cells, and thus neglecting
the spatial correlation of the fluctuations, led to severe differences
in the spatial configuration of simulated tree species abundances.
Furthermore, it also had an influence on tree species migration. It
is thus not recommended to neglect the spatial correlation in the
driver. However, the applied method to draw spatially correlated
fluctuations also has drawbacks compared to the originally
applied sampling from probability distributions. The main
disadvantage is that only climatic patterns which are represented
in the base-year set can actually occur in the generated time series
(Bugmann, 2001). Thus, the length of the selected base period and
the single selected base years could be influential. On one hand,
when a series is too short or selected such that years with extreme
values are not contained in the base period, no extreme events will
occur in the generated time series. On the other hand, when years
with extreme conditions are contained, then these will frequently
be drawn (with a probability of 1/base period length). For the
inter- and extrapolation of climate time series for simulations
with spatially explicit and in particular spatially linked models it
would thus be desirable to use more sophisticated methods.
Ideally, a method should not neglect spatial correlation and the
influence of the base period length and the selected base years
should be small. One possibility could be to use statistically
derived relationships of climatic fluctuations and static spatial
properties to generate spatially correlated noise. One could, for
example, use lapse-rates with elevation (as e.g. done by
Schumacher et al., 2004 for temperature and precipitation). This
approach is suitable for small areas, however, these relationships
are not invariant on larger extents but vary, for example, with
latitude and longitude (Jackson et al., 2009) and with distance to
large water bodies (Hutchinson, 1995). Therefore, such a method
can be rather data hungry and difficult to parametrise. For a
detailed description of such methods see, for example, Hutch-
inson (1995).

5. Conclusions

Overall, the results demonstrated that neglecting the spatial
correlations in climatic fluctuations for simulations with spatially
explicit models can be a considerable interference because it can
have a strong influence on the spatial arrangement of simulated
species abundances and on migration outcomes.

The simulations with the illustrative example in TreeMig showed
that neglecting the spatial correlation in climatic fluctuations might
only be justifiable when one is solely interested in the mean
abundance over an area and when abundance fluctuations do not
matter. The observed invariance of the biomass sum over the
transect area when neglecting the spatial correlation in bioclimatic
fluctuations will also hold for other strongly climatically driven
models because it is a consequence of the central limit theorem. For
most applications drawing climatic fluctuations independently for
single cells is therefore not recommended.

Simulations with the simple CA enabled a more detailed
analysis of effects on simulated species migration and showed that
the influence of spatial correlation in fluctuations of the
environmental driver depends on species traits. Mostly, simula-
tions with spatial correlation in environmental fluctuations
resulted in slower migration rates than simulations without
spatial correlation, however, it was opposite for species with
strong positive density dependence. Simulations driven by
environmental time series generated with a method which
neglects spatial correlations should thus not even be used to
estimate upper or lower limits of migration outcomes. They also
should not be used to make comparisons among different species,
at least not with models containing species parameters represent-
ing positive density dependence.
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The effect of past changes in inter-annual temperature variability on tree
distribution limits. J. Biogeogr. 37, 1394–1405.

Greenman, J.V., Benton, T.G., 2001. The impact of stochasticity on the behaviour
of nonlinear population models: synchrony and the Moran effect. Oikos 93,
343–351.

http://dx.doi.org/10.1016/j.ecocom.2014.02.006
http://dx.doi.org/10.1016/j.ecocom.2014.02.006
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00028-2/sbref0050


J.E.M.S. Nabel et al. / Ecological Complexity 20 (2014) 315–324324
Grenfell, B.T., Finkenstadt, B.F., Wilson, K., Coulson, T.N., Crawley, M., 2000. Reply:
nonlinearity and the Moran effect. Nature 406,, 847–847.

Hickler, T., Vohland, K., Feehan, J., Miller, P.A., Smith, B., Costa, L., Giesecke, T.,
Fronzek, S., Carter, T.R., Cramer, W., Kühn, I., Sykes, M.T., 2012. Projecting the
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