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Inferring catchment precipitation by doing hydrology backward:
A test in 24 small and mesoscale catchments in Luxembourg
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[1] The complexity of hydrological systems and the necessary simplification of models
describing these systems remain major challenges in hydrological modeling. Kirchner’s
(2009) approach of inferring rainfall and evaporation from discharge fluctuations by

“doing hydrology backward” is based on the assumption that catchment behavior can

be conceptualized with a single storage-discharge relationship. Here we test Kirchner’s
approach using a densely instrumented hydrologic measurement network spanning

24 geologically diverse subbasins of the Alzette catchment in Luxembourg. We show that
effective rainfall rates inferred from discharge fluctuations generally correlate well with
catchment-averaged precipitation radar estimates in catchments ranging from less than

10 to more than 1000 km~ in size. The correlation between predicted and observed effective
precipitation was 0.8 or better in 23 of our 24 catchments, and prediction skill did not vary
systematically with catchment size or with the complexity of the underlying geology.
Model performance improves systematically at higher soil moisture levels, indicating that
our study catchments behave more like simple dynamical systems with unambiguous
storage-discharge relationships during wet conditions. The overall mean correlation
coefficient for all subbasins for the entire data set increases from 0.80 to 0.95, and the mean
bias for all basins decreases from —0.61 to —0.35 mm d~'. We propose an extension of
Kirchner’s approach that uses in situ soil moisture measurements to distinguish wet and dry

catchment conditions.
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1. Introduction

[2] Every hydrological modeler strives to overcome the
inherent complexity and heterogeneity of hydrological
processes by making appropriate modeling simplifications
and generalizations. In one recent effort along these lines,
Kirchner [2009] showed that if a catchment can be
described by a single storage element in which discharge is a
function of storage alone, this storage-discharge relation can
be estimated from streamflow fluctuations. Kirchner [2009]
demonstrated that in such simple dynamical systems, it is
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possible to “do hydrology backward,” that is, to infer rain-
fall and evaporation time series from discharge fluctuations
alone. Although the effect of evaporation and plant transpi-
ration on runoff recession has been studied previously in
detail [e.g., Federer, 1973; Daniel, 1976; Brutsaert, 1982],
the “hydrology backward” approach offers interesting new
possibilities for catchment hydrology and merits further test-
ing in catchments characterized by different climates and
lithologies. Teuling et al. [2010] have recently investigated
the “hydrology backward” approach in the Swiss Rietholz-
bach catchment, observing that the model performed better
under wet conditions. Kirchner [2009] has also pointed out
that the approach should begin to break down in catchments
that are larger than individual storm systems, due to the fact
that a model that represents a basin as a single nonlinear
storage will not easily encompass cases in which one part of
the basin can be completely saturated after a storm while
another part remains dry. However, given that the hydrology
backward approach has so far been applied in relatively
small catchments like Plynlimon (~10 km?) in Wales
[Kirchner, 2009] and Rietholzbach (~3 km?) in Switzerland
[Teuling et al, 2010], it has been unclear whether the
approach can be used successfully in much larger basins.

[3] Here we investigate the advantages and limitations of
the “hydrology backward” approach in a densely instru-
mented network of geologically diverse catchments, inferring
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catchment average rainfall rates from streamflow fluctuations
and testing them against weather radar rainfall data that pro-
vide more representative catchment average precipitation
measurements than interpolated point measurements do.
Although Kirchner [2009] already presented a virtual experi-
ment that applied the approach to a hypothetical storm with
different antecedent moisture levels (i.e., storage levels) to
demonstrate the concept that peak runoff can be estimated
from the sensitivity function, we go a step further by using in
situ soil moisture measurements as a proxy for the catchment
storage status, in order to investigate the impact that anteced-
ent soil moisture conditions have on model performance.

[4] In summary this paper has two main objectives: (1)
to understand the limitations and advantages of Kirchner’s
[2009] approach with respect to different catchment charac-
teristics (e.g., basin size, lithology) and soil wetness condi-
tions and (2) to assess the potential of the approach for
diagnosing the functioning of hydrological systems and to
compare model behavior under various catchment conditions.

2. Methods
2.1. Kirchner’s Methodology

[s] The methodology outlined by Kirchner [2009] com-
bines the conservation of mass equation (1) and the
assumption that the stream discharge O depends solely on
the amount of water S stored in the catchment, quantified
by a deterministic storage-discharge function (2):

ds
G-F-E-0 )

0=/(5) 2

where S is the volume of water stored in the catchment, in
units of depth [L] and P, E, and Q are the rates of precipita-
tion, evaporation, and discharge, respectively, in units of
depth per time [L/T]. Assuming that Q is an increasing func-
tion of S, the storage-discharge function can be inverted:

s=7"0) 3)

[6] Equation (2) can be differentiated and combined
with equation (1) as follows:

9 _dods _do , .
E‘det_dS(P E-0) ©

[7]1 Because f(S) is invertible, equation (2) can also be
differentiated as
d

C 1O =r170) =£(©) ©)

[8] Where g(Q) expresses the sensitivity of discharge to

changes in storage. Equation (5) can be combined with
equation (4) and rearranged as follows:

~do  do/dt do/dt
T dS  dS/dt P—E-Q

g(9) (6)
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[0] For periods when P and E can be neglected, this
becomes

~do  do/dt —dO/dt
TdS ds/de Q

g(0) 0

PKQOEKQ

which would allow one to estimate g(Q) from hydrograph
data alone. It follows that estimating g(Q) requires time se-
ries subsets when precipitation and evaporation fluxes are
small in order to simplify equation (6) to equation (7). To
determine periods where P and E can be neglected we
chose to apply the second of the two methods presented by
Kirchner [2009]: we selected the hourly records for night-
time during which there was a total recorded weather radar
rainfall amount of less than 0.1 mm within the preceding
6 h and the following 2 h. We defined nighttime as the pe-
riod from 1 h after sunset to 1 h before sunrise. These rain-
less nighttime hours are used to establish the sensitivity
function g(Q). Once g(Q) has been calibrated, the model
can be applied to all other periods (including daytime and
periods with rainfall).

[10] The precipitation that can be inferred with the origi-
nal method is at best “effective” precipitation, which
remains after replenishment of the interception storages.
What we consider as “effective rainfall” is rainfall minus
interception. In that sense to be methodologically more
correct and to compare calculated effective rainfall with
inferred effective rainfall, we preprocessed the observed
precipitation by subtracting the replenishment of the inter-
ception storage Ss compartment. In doing this, we defined
the interception storage with a seasonally varying satura-
tion threshold of 2 mm in winter, 2 mm in spring, 6 mm in
summer and 3 mm in autumn. These values are based on
previous research in the study area [Gerrits et al., 2010].
The storage capacity is calculated for each daily time step
by taking into account the input (radar rainfall time series)
and the evaporation “loss,” based on a Penman-Monteith
potential evaporation time series from a weather station.
Despite errors associated with the measured data having an
impact on the model output evaluation, we note that similar
operations are not uncommon in hydrological modeling.
For example, Young [2006] preprocessed the rainfall in
similar ways to filter out potential nonlinearities in the rain-
fall-runoff relationship. We carried out a sensitivity impact
analysis of the applied threshold described by Gerrits et al.
[2010] to assess the impact of our interception model on
the Kirchner model results in the Mess basin at Pontpierre
(8). The results showed that the average bias decreases, and
the correlation coefficient does not change significantly, as
the maximum storage capacity increases from no intercep-
tion to the values previously determined by Gerrits et al.
[2010]. A further increase to 4, 4, 8, and 5 mm in the winter,
spring, summer, and fall, respectively, has no significant
influence on model performance.

2.2,

[11] Threshold behavior has been frequently discussed as
influencing surface and subsurface runoff generation proc-
esses at different spatial scales [Uhlenbrook, 2003 ; Uchida
et al., 2006; Zehe et al., 2007; Zehe and Sivapalan, 2009;
Graham et al., 2010; Matgen et al., 2012]. Two cardinal
hydrological functions in a hillslope have been described
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by Savenije [2010]: moisture retention and preferential
subsurface drainage. Rapid subsurface flow, also named
storage excess subsurface flow [Savenije, 2010], is the
dominant stormflow generation mechanism on hill slopes if
Horton-type overland flow is negligible, while the domi-
nant stormflow generation mechanism in the riparian zone
is saturation excess overland flow. Both processes involve
clear threshold mechanisms. Rainfall intensity and anteced-
ent moisture conditions also play an important role, and
define which runoff processes occur at a specific location
during an event [Uhlenbrook, 2003 ; Zehe et al., 2007]. Our
fundamental working hypothesis is that we expect catch-
ments to behave as simple dynamical systems with unam-
biguous storage-discharge relationships only if critical soil
moisture thresholds are exceeded. Soil moisture measure-
ments can help to reflect this threshold behavior [Detty and
McGuire, 2010] and can be available as in situ measure-
ments or global grid-based remote sensing measurements
[Brocca et al., 2010a, 2010b]. Our objective is to compare
the performance of the Kirchner model during periods when
different threshold values of soil moisture are exceeded.

[12] We applied the approach in separate time periods by
extracting those hourly time steps where the soil wetness
index (defined in section 4) exceeded thresholds ranging
from 0% to 80% in steps of 10%. To estimate g(Q) from
hourly discharge data and following Kirchner [2009] (who
in turn followed Brutsaert and Nieber [1977]), we calculated
the rate of flow recession as the difference in discharge
between two successive hours, —dQ/dt = (Q,_a, — O))/At,
and plotted it as a function of the average discharge over the
2 h, (Q;_a; + Op/2. The discharge values Q correspond to
time steps where low precipitation and low evaporation
occurred. A third condition is added by selecting O values
for time steps where a certain soil moisture threshold is
exceeded. For the rest of this analysis whenever the method
is applied with a 0% soil moisture threshold the method can
be considered as the original method as Kirchner [2009]
applied it. As soon as a soil moisture threshold greater than
0 is considered, the g(Q) function is recalculated using only
time periods above the threshold.

[13] The functional relationship between —dQ/dr and Q is
estimated by grouping the hourly data points into ranges of
0, and then calculating the mean and standard error for
—dQ/dt and Q within each group. We fitted the grouped
means using a quadratic curve, which leads to the following
expression (8) for the sensitivity function g(Q):

do
In(g(Q)) =1 <—§> ~ ¢y + ¢ In(Q) + c3(In (Q))2 (8)

[14] If the sensitivity function g(Q) of a catchment is
known, one can infer precipitation directly from measured
discharge fluctuations, taking into account the time lag
between changes in storage and changes in streamflow
measurements at the gauging station. The method for infer-
ring precipitation rates from streamflow fluctuations is
derived by rearranging equation (6) to yield

do
_ _ _dt
Pt 2(0)

+0 ©)
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[15] According to Kirchner [2009], whenever it is rain-
ing, we can assume that any evaporation beyond intercep-
tion losses is relatively small, so that P — E = P.

[16] This leads to the following rainfall estimation
equation:

(Orres1 — Qrie-1)/2
(2(Ori11) + g(Qrre-1)]/2

P, ~ max <O, + Qe + Qt+£—1)/2>

(10)

[17] P, is the effective precipitation rate inferred from
the discharge time series O following a time lag ¢ for
changes in storage to be reflected in streamflow at the gaug-
ing station. We defined the lag time for each basin by cal-
culating the correlation coefficient between the inferred
and measured effective rainfall with lag times of 1, 2, 3, 4,
5, 6, 12, 24 and 48 h and by determining the lag time that
provides the best performance level. The calculated lag
times ranged from 2 h in the 10 smallest basins to 12 h in
the biggest basin. Precipitation rates are only calculated for
the time steps with soil wetness conditions above the same
thresholds that were used to calculate g(Q).

3. Study Area
3.1. Alzette River Basin

[18] The Alzette catchment (1092 km?) in the Grand
Duchy of Luxembourg (Figure 1) is an ideal test area for
the purposes of this work. Dense networks of rain gauges
(18 stations) and discharge measurements (24 stations)
cover the Alzette catchment; moreover the entire region is
also covered by weather radar. We applied the Kirchner
approach to 24 subcatchments to generate a catchment pre-
cipitation time series for each of them. To avoid any misun-
derstanding in the text about the different subbasins we
indicate the name of the subbasins by giving the name of
the river, the name of the discharge gauging station and the
ID number of the subbasins (see Figure 1) in parentheses.

[19] Luxembourg is divided into two major geomorpho-
logical regions. The Oesling represents the northern third
of Luxembourg and belongs to the Ardennes Massif. The
relief consists of a plateau that averages 450 m in elevation.
Rocks are mainly composed of schist, phyllads, sandstone
and quartzite of Devonian age. This plateau, which sup-
ports cropland and forest, is incised by deep, forested,
V-shaped valleys. The southern part of the country, called
Gutland, lies at lower altitudes than the Oesling. The Gut-
land belongs geologically to the Paris basin and its relief
consists of alternating plateaus and gentle hills. The monot-
ony of the landscape is only interrupted by deep valleys cut
into the Luxembourg sandstone and large valleys in the
Keuper marls [Pfister et al., 2004]. Main lithologies occur-
ring in the Gutland are marls, sandstones and limestones.
The mesoscale Alzette catchment in southwestern Luxem-
bourg belongs mainly to the Gutland region but also
touches schist areas in the north. Figure 1 gives an over-
view of the study area of the Alzette catchment and the
widely varying geological conditions in the different subba-
sins, which account for their varied hydrological responses
to rainfall.
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3.2. Hydrology of the Alzette River Basin

[20] Rainfall-runoff processes in the Alzette basin are as
variable as the geology is diverse. There are three different
dominant lithologies occurring in the Alzette basin.

[21] 1. Marls. Marly substrata are well developed in the
Gutland. They are impermeable at depth, and generally highly
responsive to rainfall events. They have little storage capacity,
making their runoff regime extremely variable, with high dis-
charges during winter. Discharge promptly follows rainfall
events, and is characterized by high and steep peaks. Stream-
flow is low or absent during prolonged dry weather periods.
When dry-weather streamflow does occur, it is sustained by
saturated throughflow occurring at the interface between the
soil and the underlying bedrock layer.

10
)

79%

9
‘ 70/0
93%

Subcatchment locations, sizes, and lithologic classifications.

[22] 2. Sandstone. Mainly represented by the Gres de
Luxembourg, this geological formation is highly permeable
and therefore deep percolation occurs. In sandstone areas,
streamflow is mainly sustained by groundwater flow. Dis-
charge is produced and sustained during long time spans,
and is characterized by smooth peaks, long recession periods,
and a delayed response to rainfall [Juilleret et al., 2005].

[23] 3. Schist. These geological formations occur in the
Oesling and are characterized by an upper weathered zone
on top on a relatively impermeable layer. The top layer has
a relatively small storage capacity, becoming quickly satu-
rated during wet periods. Similar to the marl units, discharge
is high during the wet season and low or absent during
prolonged dry periods. A complex system of cracks and
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channels in the rock mass allows deep percolation and a
long-term base flow discharge component [Fenicia et al.,
2006; Krein et al., 2007].

[24] Further characteristics of the Alzette catchment are
as follows.

[25] 1. Temperate climatic conditions predominate,
influenced by westerly atmospheric circulation patterns and
a strong precipitation gradient, with rainfall decreasing
from west to east. Rainfall totals are higher in the north of
Luxembourg than in the south. This is due to a strong topo-
graphic influence on the spatial distribution of rainfall, with
the Mosel cuesta (ridge) in the southeast and the Ardennes
massif in the north of the country.

[26] 2. The seasonal variability of rainfall intensities is
small, but the seasonal variability in temperature and evap-
oration is pronounced, with a maximum in summer and a
minimum in winter. The average annual temperature is
about 9°C and the catchment-averaged rainfall totals
roughly 740 mm yr .

[27] 3. The prevalence of impermeable substrata varies
between 30% and 100% among the Alzette’s various sub-
catchments. The degree of urbanization also varies among
the subcatchments, ranging from 5% to 27%, and the frac-
tion of agricultural lands varies from 37% to 80% [Pfister
et al.,2004].

4. Data

[28] We compiled a complete set of all the necessary
data for our study at hourly frequency for the calendar year
2007. The discharge data of the 24 subbasins used in this
study were provided by the Luxembourg water resources
administration (Administration de la Gestion de I’Eau Lux-
embourg) and the Public Research Centre—Gabriel Lipp-
mann in Luxembourg. The data are aggregated to hourly
intervals in order to generate the sensitivity function g(Q).

[29] The weather radar data set used here is the RADO-
LAN composite data set, with hourly cumulated rainfall
data provided by the German Weather Service (DWD) at a
grid cell resolution of 1 km?. The radar online adjustment
procedure of the DWD merges the different radar-based
precipitation analyses and in situ based precipitation obser-
vations located in Germany and its border regions to guar-
antee high quantitative and qualitative rainfall estimation
performance [Bartels et al., 2004]. The closest radar device
to the Alzette catchment is located near the German village
of Neuheilenbach (Figure 1). The data set has been eval-
uated and corrected by the authors for the study area and
time period using a radar gauge merging method based on
the conditional merging methodology first developed by
Sinclair and Pegram [2005] and positively evaluated by
Goudenhoofdt and Delobbe [2009]. The in situ measure-
ments used for this purpose were provided by 18 automatic
rain gauges of the Luxembourg water resources administra-
tion (Administration de la Gestion de I’Eau Luxembourg),
ASTA (Administration des Services Techniques de 1’ Agri-
culture) and the Public Research Centre—Gabriel Lippmann
in Luxembourg. Because the aim of this work is to estimate
areal catchment rainfall rates from discharge observations,
weather radar plays a significant role as it provides precipi-
tation estimation at high spatial and temporal resolution
over a large area. A network of rain gauges can provide
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more accurate pointwise measurements but the spatial rep-
resentativity is limited. The two observation systems are
generally seen as complementary and are used here as a
composite benchmark rainfall data set [Goudenhoofdt and
Delobbe, 2009].

[30] Our soil moisture measurements come from the
Bibeschbach catchment above Livange (12), located in the
southern part of the Alzette River basin (Figure 1). The
CRP-Gabriel Lippmann uses this subcatchment as a test
basin, equipped with a set of 16 ECH,O Decagon soil
moisture sensors at 8 sites. These sensors measure the per-
mittivity of the topsoil layer, which is strongly dependent
on its water content at a depth of approximately 5 cm. The
measurements are expressed as soil wetness indices (SWI)
calculated by normalizing the soil moisture data between
the long-term minimum and maximum, such that the values
range between 0 and 1 (see Matgen et al. [2012] and Heitz
et al. [2010] for further details). Although it would have
been preferable to have soil moisture measurements in each
subbasin, we have based our approach on the assumption
that these in situ soil moisture measurements in one of our
study catchments can be used as a rough proxy for the soil
moisture status in the entire study area, and hence as a
proxy for the occupied storage capacity of the unsaturated
subsurface storage compartment. The use of soil moisture
observations for different types of rainfall-runoff modeling
has already been analyzed in detail [Aubert et al., 2003;
Anctil et al., 2008; Brocca et al., 2009; Tramblay et al.,
2010; Zehe et al., 2010]. In these studies the authors used
local soil moisture information (even for the surface layer
only) as a proxy of soil moisture at catchment scale. Stud-
ies on soil moisture temporal stability [e.g., Vachaud et al.,
1985; Brocca et al., 2010c; Loew and Schlenz, 2011;
Matgen et al., 2012] indirectly obtained the same results,
i.e., that point measurements can be effectively used to esti-
mate temporal patterns of soil moisture for larger areas.

5. Results

[31] Following Kirchner’s methodology, we inferred
effective precipitation directly from measured streamflow
fluctuations with a time lag between changes in the storage
and changes in streamflow measured at the gauging station.
Figure 2 illustrates the rainfall-runoff threshold behavior in
three different subbasins of the study area, in relation to a
soil wetness index (SWI) time series measured by soil
moisture probes in one of the three catchments (see section
4 for further details). These three subbasins are located in
different parts of the study area with different lithologies
(marl, schist, and sandstone). The SWI/discharge relation-
ships in the first and third basin indicate threshold rainfall-
runoff behavior, whereas the second basin shows a smoother
rainfall-runoff relation. Based on these observations, soil
wetness index thresholds (SWI) from 0% to 80% in steps of
10% were defined, and g(Q) was estimated from the reces-
sion time steps with SWI values above these thresholds.
Because we only have a complete data set for one year,
there are not enough data points to reliably calculate g(Q)
above the SWI threshold of 80%. It is important to note that
we used discharge data points above the SWI thresholds,
both in constructing the recession plots and also in applying
the inversion formula (equation (10)) to infer rainfall rates.
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Figure 2. Discharge-SWI plots of the (a) Bibeschbach basin at Livange (12), (b) the Colpach basin at
Colpach (17), and (c) the Eisch basin at Hunnebuer (5). The SWI estimates are provided by the in situ

measurements in the Bibeschbach basi.

[32] We evaluated the impact of different soil moisture
thresholds on model performance, as measured by the cor-
relation between predicted and observed daily average
effective precipitation. A problem can emerge here from
comparing correlation coefficients between different sam-
ple sizes. Therefore we made the following statistical
test: we calculated the 95% confidence intervals for the
correlation coefficients measured for 0% SWI and 80%
SWI using the Student’s t distribution. If those error bars
do not overlap, one can be highly confident that the two
correlation coefficients are statistically different. Out of the
24 basins we only found 3, Alzette at Hesperange (4),
Dudlingerbach at Bettembourg (11), and Alzette at Schif-
flange (23), where the error bars overlap. The correlation
coefficient and mean bias performance of the model runs at
different SWI thresholds can be found in Figures 3 and 4.
Additionally, Table 1 contains the correlation coefficient,
the RMSE, the bias, standard deviation of prediction errors
(SDPE), and the slope of the relationship between predicted
and observed effective precipitation for all basins, using a
SWI threshold of 80%. When comparing model perform-
ance across different SWI thresholds, it is important to
keep in mind that the number of modeling time steps varies
according to the SWI threshold. As the SWI threshold is
raised from 0% to 80%, the overall mean correlation coeffi-
cient for all subbasins for the entire data set increases from
0.80 to 0.906 and the mean bias for all basins is reduced
from —0.61 to —0.35 mm d~'. In 22 out of 24 catchments
we observe a stepwise increase in the correlation coeffi-
cient as the SWI threshold rises from 0% to 80% (apart
from the Dudelingerbach (11) and the Alzette basin at
gauge Schifflange (23)). For all basins the correlation coef-
ficient lies above 0.75 with a SWI threshold between 60
and 80%. The maximum bias was observed in the Kaylbach
at gauge Kayl (10) with —3.28 mm d~! at 80% SWI, and
the minimum bias was observed in the Roudbach basin at
gauge Platen (19) with 0.01 mm d~'. In fourteen basins (ID
numbers 1, 3, 4, 5,7, 8, 9, 13, 15, 16, 19, 20, 22, 23, and
24) we can observe a bias decrease or stabilized bias evolu-
tion as the SWI threshold increases, with an optimum value
in the range of 60% to 80% soil wetness. In nine basins (ID

numbers 2, 6, 10, 11, 12, 14, 17, 18, and 21) we see a bias
increase. By calculating the linear regression of the meas-
ured versus inferred rainfall scatterplots (Figures 7 and 8)
we determined the slope of the trend line. The average
slope for all 24 basins at a SWI of 0% is 0.53, while the av-
erage slope at 80% SWI is 0.74.

[33] In order to test whether the implementation of the
lag time has any significant effect on g(Q), we carried out a
sensitivity analysis of the model in the Attert basin at gauge
Reichlange (6) (~160 km?). This basin has an optimized
lag time of 5 h. We implemented lag times of 1 h and 5 h to
select the nighttime hours to generate the g(Q) function.
We could not find any significant difference in the results.
At a SWI of 0% (original method) we calculated a correla-
tion coefficient of 0.77 and a bias of 1.18 mm d ™' at a lag
time of 1 h. The correlation coefficient at 5 h lag time is still
0.77 and the bias is 1.22 mm d~'. Ata SWI of 80% we get a
correlation coefficient of 0.93 and a bias of 0.82 mm d '
with 1h lag time and a correlation coefficient of 0.95 and a
bias of 0.80 mm d ™' at a 5 h lag time. Similar results were
obtained for the Colpach (17) (~20 km?), the Alzette at
Lintgen (24) (~425 km?) and the Eisch at Hunnebuer (5)
(~160 km?) basins.

[34] Two examples of basins with good performance are
the Mess at gauge Pontpierre (8) with a correlation coeffi-
cient of 0.92, a RMSE of 2.3 mm d', a bias of — 0.34
mm d ', an SDPE of 2.3 mm d ' and a slope of 0.81 at
80% SWI, and the Wollefsbach at gauge Useldange (20)
with a correlation coefficient of 0.93, a bias of —0.58
mm d~', a RMSE of 1.9 (the lowest of all the sites) an
SDPE of 1.8 mm d~' (also the lowest of all the sites) and a
slope of 0.78 at 80% SWI. The largest catchment, the entire
Alzette at gauge Ettelbrueck (2) with more than 1000 km?,
also showed good overall model performance with a corre-
lation coefficient of 0.95, a bias of —-0.89 mm d_l, a RMSE
of 2.27, an SDPE of 2.10 mm d~' and a slope of 0.72 at
80% SWI.

[35] Figures 5 and 6 provide a closer look at sensitivity
function estimation in two specific subbasins: the Mess
River at Pontpierre (8) and the Schwebich at Useldange
(21). Figures 5a, 5c, and 5e and 6a, 6¢, and 6e show the
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Figure 3. Correlation coefficient and mean bias model performance

SWI threshold

SWI threshold

measurements of the Kirchner

model with SWI thresholds ranging from 0% to 80% for basins 1 to 12.

relationship between discharge and flow recession with
SWI thresholds of 0%, 50% and 80%. Figures 5b, 5d, and
5f and 6b, 6d, and 6f show the curves that were fitted to the
grouped means using least squares regression. The imple-
mentation of SWI thresholds leads to a reduction of the
scattering in Figures 5b and Sc and 6¢ and 6f, especially in

low-flow periods, where a clearer linear functional relation-
ship between —dQ/dt and Q is obtained.

[36] Plots in Figures 7 and 8 with SWI thresholds of 0%,
50% and 80% show the measured daily radar catchment
means compared to the daily effective precipitation rates
inferred from streamflow fluctuations for six example
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Figure 4. Correlation coefficient and mean bias model performance measurements of the Kirchner
model with SWI thresholds ranging from 0% to 80% for basins 13-24.

catchments. These basins span the three dominant litholo-
gies of the study area: schist, marl, and sandstone. The
Wark basin at gauge Ettelbrueck (3, Figure 7) represents a
typical schist basin. The Mierbech basin at gauge Huncher-
ange (9, Figure 7), the Mess basin at gauge Pontpierre (8,
Figure 8), and the Wollefsbach basin at gauge Useldange

(20, Figure 8) are typical marl basins. The Mamer basin at
gauge Schoenfels (7, Figure 8) represents a sandstone-domi-
nated catchment. The detailed geological classification of
these basins can be found in the pie charts of Figure 1. The
Kaylbach at gauge Kayl (10) in Figure 7 exhibits poorer
performance, but this catchment is extensively disturbed by

8of 15



W10525

KRIER ET AL.: UNDERSTANDING HYDROLOGY BACKWARD

W10525

Table 1. Performance Measurements of Simulated Versus Measured Daily Rainfall Rates for All 24 Subbasins at a SWI Threshold

Figure 5. Recession plots for the Mess River at Pontpierre (8) with SWI thresholds of 0%, 50%, and
80%. The blue dots in Figures 5a, 5b, and Sc represent the time steps when P and E can be neglected and

the specific SWI threshold occurred. The black dots in Figures Sa—5f are the binned means.
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of 80%
Correlation
ID Gauge Location River Coefficient RMSE Mean Bias SDPE Slope
1 Bissen Attert 0.944 1.98 0.17 1.99 091
2 Ettelbrueck Alzette 0.954 227 —0.89 2.10 0.72
3 Ettelbrueck Wark 0.907 2.69 —0.78 2.59 0.75
4 Hesperange Alzette 0.862 2.98 —0.54 2.95 0.62
5 Hunnebuer Eisch 0.813 3.64 —0.06 3.67 0.78
6 Reichlange Attert 0.948 223 0.80 2.10 0.88
7 Schoenfels Mamer 0.901 4.10 —1.44 3.88 0.43
8 Pontpierre Mess 0.920 2.30 —0.34 2.30 0.81
9 Huncherange Mierbech 0.864 1.96 0.13 2.67 0.96
10 Kayl Kaylbach® 0.917 6.28 —3.28 5.41 0.14
11 Bettembourg Dudelingerbach? 0.759 3.85 —-0.79 3.79 0.29
12 Livange Bibeschbach 0.915 2.40 0.97 2.21 1.13
13 Merl Merl 0.914 227 —0.48 223 0.87
14 Luxembourg Petrusse 0.933 2.10 0.80 1.96 0.94
15 Mamer Mamer 0.902 3.30 —1.08 3.15 0.48
16 Hagen Eisch 0.932 2.07 0.09 2.08 0.76
17 Colpach Colpach 0.866 5.97 1.47 5.82 1.57
18 Niederpallen Pall 0.969 2.86 —1.00 2.69 0.57
19 Platen Roudbach 0.932 2.07 0.01 2.08 0.84
20 Useldange Wollefsbach 0.934 1.90 —0.58 1.82 0.78
21 Useldange Schwebich 0.976 2.38 —1.03 2.16 0.61
22 Useldange Attert 0.969 2.19 —0.53 2.13 0.66
23 Schifflange Alzette 0.818 3.23 0.51 3.25 0.56
24 Lintgen Alzette 0.903 2.53 —0.66 2.46 0.61
Mean 0.906 2.898 —0.354 2.812 0.74
“Basin known to be disturbed by extensive subsurface tunneling.
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Figure 6. Recession plots for the Schwebich river at Useldange (21) with SWI thresholds of 0%, 50%
and 80%. The blue dots in Figures 6a, 6b, and 6¢ represent the time steps when P and E can be neglected
and the specific SWI threshold occurred. The black dots in Figures 6a—6f are the binned means.

anthropogenic influences that are explained more in detail
in section 6. Only 7% of precipitation leaves the catchment
as Kaylbach streamflow, with the rest leaking into adjacent
catchments through a network of tunnels. The model under-
estimates precipitation at Kaylbach because the Kaylbach
catchment substantially violates the mass conservation
assumptions on which the model is based. Figure 9 shows
box plots of the prediction errors for all 24 subbasins with
median, lower, and upper quartiles, data range, and outliers.
Figures 10 and 11 show the time series of the simulated ver-
sus measured daily rainfall rates during a rainfall event in
the second half of February. It is one of the most intense
events during 2007 in the entire study area. The different
plots show model results in the six basins already presented
in Figures 7 and 8.

6. Discussion

[37] Under both wet and dry conditions, model estimates
of basin-averaged effective precipitation rates agree with
weather radar measurements (mean correlation coefficient
of 0.80 and mean bias of —0.61 mm d ™', averaged over the
24 Alzette basins). Model performance is even better under
wetter conditions, with the correlation coefficient rising to
0.906 and the mean bias decreasing to —0.35 mm d '
above a soil wetness index threshold of 80%. The average
slope of the relationship between predicted and observed
effective precipitation, averaged over all basins, likewise
rises from 0.53 to 0.74.

[38] We argue that the model works better during wetter
periods (such as wintertime in the Alzette catchment) due
to the fact that the unsaturated subsurface storage becomes
filled close to its capacity and the catchment becomes bet-
ter approximated by a single storage with a single storage-
discharge relationship. This result is consistent with the
findings of Teuling et al. [2010] in the Swiss Rietholzbach
catchment. They also argue that the concept of a simple dy-
namical system is more appropriate under wet conditions.
The model performance results in Figures 3 and 4 show
that when time steps with a SWI below a certain threshold
were excluded, thereby focusing on time steps where the
catchment storage was highly saturated, the performance of
the model in most of the subbasins increased. In 22 out of
24 subcatchments of the Alzette basin we could improve
the correlation coefficient performance of the model by
implementing SWI thresholds.

[39] Generally, we found better model performance in
basins with predominantly marly lithologies (e.g., the Mier-
bech basin at gauge Huncherange (9) in Figure 7, the Mess
at gauge Pontpierre (8) and the Wollefsbach at gauge Usel-
dange (20) in Figure 8). Marl is a sedimentary rock com-
posed primarily of clay and calcium carbonate, and tends to
be impermeable. During periods of extended rainfall, soils
become saturated and connectivity between different soil
layers is established, generating saturated overland flow and
rapid subsurface flow. The Mess River (8) is located in the
southern part of the Alzette catchment in a region noted for
clay soils, which inhibit deep infiltration. Pfister et al. [2002]
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Figure 7. Inferred versus measured effective daily rainfall rates for (a—c) the Wark catchment at

Ettelbriick (3), (d—f) the Mierbech basin at Huncherange (9), and (g—i) the Kaylbach at Kayl (10), with
SWI thresholds of (left) 0%, (middle) 50%, and (right) 80%. Measured rainfall rates were preprocessed
to account for interception as described in the text. The Kaylbach catchment is extensively disturbed by
subsurface tunneling, with underground drainage into adjacent catchments. The dominant lithology for

each basin follows the basin names.

showed that the maximum runoff coefficients (the percent-
age of precipitation that appears as runoff), obtained via the
double-mass curves of rainfall and runoff for 18 subcatch-
ments of the Alzette catchment, range between 10% and
66%. They defined a runoff coefficient of 54% for the Mess
River at gauge Pontpierre (8), which is close to the maxi-
mum measured in the entire Alzette catchment. We argue
that this partly explains the good results obtained in that sub-
basin using both the original Kirchner model and the model
with higher SWI thresholds.

[40] Figures 10 and 11 show that during the rainfall
event after 23 February the timing of the predicted rainfall
peaks in the presented basins is very accurate. The Wollefs-
bach basin at gauge Useldange (20) in Figure 11c showed

particularly good performance. Although the model greatly
underestimated the rainfall intensities in the Kaylbach ba-
sin (in Figure 10c; see further explanations below), the tim-
ing in all examples of the event was exact.

[41] In Figure 9 we can observe error outliers in the box
plots with values up to 20 mm d~'. After analyzing the
input data it turned out that the errors around —20 mm d '
for the basins with the IDs 7, 11, 15, and 23 all occurred on
the same day on 17 February. During that day the rain
gauges recorded the most intense rainfall event in the year
of our study, followed by the highest discharge peaks in all
streams. The weather radar measured rainfall intensities up
to 40 mm d ™! in the Pall basin (18). Because similar errors
occur in different basins at the same time, we argue that it
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Figure 8. Inferred versus measured effective daily rainfall rates for (a—c) the Mess catchment at Pont-

pierre (8), (d—f) the Mamer basin at Mamer (15), and (g—i) the Wollefsbach at Useldange (20), with SWI

thresholds of (left) 0%, (middle) 50%, and (right)

80%. Measured rainfall rates were preprocessed to

account for interception as described in the text. The dominant lithology for each basin follows the basin

names.

is more likely that there was a problem with the measured
radar rainfall images during that day, rather then a problem
with the discharge measurements in these basins. Indeed,
comparison of the weather radar with rain gauge measure-
ments during that day shows that the rain gauges measured
about 5 to 10 mm less rainfall than the weather radar. It
seems that the radar only had such problems on that spe-
cific day compared to the rest of the year. However we
could also observe that in some basins the model could
reproduce this rainfall event very well. One example is the
Wollefsbach basin at gauge Useldange (20), with 27.6
mm d~' simulated and 29.0 mm d~' measured rainfall by
the radar. Generally, the longer the time period of discharge
data that is available to fit the sensitivity function, the more
robust and reliable the model is during extreme events. As

these examples illustrate, the Kirchner model can be used
to diagnose measurement errors by checking for inconsis-
tencies between rainfall and discharge time series, and to
identify basins that are not well characterized by this spe-
cific model structure.

[42] The basin with the most obvious bias is the Kayl-
bach (10). The southern part of the study area, in which the
Kaylbach and also the Dudlingerbach at gauge Bettem-
bourg (11) are located, was heavily industrialized in the
last 100 years due to ore mining. The subsurface bounda-
ries of these basins are heavily disturbed by mines and tun-
nels drawing that drain water out of the catchment or lead
to unknown subsurface water exchange [Pfister et al.,
2002]. In the case of the Kaylbach, only 7% of precipitation
leaves the catchment as streamflow, with the rest either
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Figure 9. Box plots of the prediction errors of the simulated daily rainfall rates. The blue box extends
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lier points are those past the ends of the whiskers.

evaporating or draining away through tunnels. This explains
the significant underestimation of rainfall (see the Kaylbach
(10) plots in Figures 7g—71). We argue that the lower model
performance in this case is not due to the limitations of the
model but rather to the disturbed water balance in that
catchment.

[43] As already hypothesized by Kirchner [2009] the the-
oretical foundations of the method are challenged by catch-
ments with heterogeneous and complex geology, such as
those that have multiple unconnected subsurface reservoirs
with dry patches in between. In such configurations dis-
charge may not be a single-valued function of storage, but
instead may depend on how that storage is distributed
among various subsurface reservoirs, and thus streamflow
fluctuations may not be unambiguously related to storage
fluctuations. However, our results do not show a clear rela-
tionship between model performance and the geological
complexity of the individual catchments. For example, the
Pall catchment at gauge Niederpallen (18) is dominated
partly by schist and partly by different types of marls, which
would seem to make it difficult to characterize the basin as
one simple dynamical system. Nonetheless, the performance
of the model is not markedly better or worse in the Pall
catchment than in the other catchments of the Alzette basin.
Our results demonstrate rather good performance of the

model even in the most challenging catchment configura-
tions. Likewise, the model performance in larger basins,
with drainage areas between 200 and 1000 km?, is at least
as good, and possibly even better, than it is in basins with
drainage areas of 20 km? or less. Considered together, these
results suggest that once a critical soil moisture threshold is
exceeded and the connectivity between multiple reservoirs
is established the model performs reasonably well even in a
complex environment.

[44] Kirchner [2009] has pointed out that snowfall and
melting could potentially affect model results. One can
expect to obtain false pulses of inferred effective precipita-
tion during periods of snowmelt and rain on snow with sub-
sequent melt of the snowpack; what is inferred in such
cases is not precipitation per se (and particularly not frozen
precipitation), but rather wet precipitation (net of interception
losses) plus snowmelt. However, in the area under investiga-
tion snowmelt-induced runoff does not occur very frequently,
so this aspect of the model could not be investigated.

[45] At low rainfall rates some point scattering can still
be observed in Figures 7a, 7d, 8d, 8g, and 8h, close to the x
axis, especially with a SWI threshold of 0%, even after
implementing the interception storage. This scatter partly
results from very low measured radar rainfall rates that did
not cause any reaction in the stream. The “variable source
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Figure 10. Precipitation time series of inferred (80%
SWI) versus observed effective daily rainfall rates in (a)
the Wark catchment at Ettelbriick (3), (b) the Mierbech ba-
sin at Huncherange (9), and (b) the Kaylbach at Kayl (10)
during the event of 23 February through 8 March 2007.
The Kaylbach catchment is extensively disturbed by sub-
surface tunneling, with underground drainage into adjacent
catchments.

area” concept of Hewlett and Hibbert [1967] says that
water in a catchment has to be “connected” in order to gen-
erate runoff; as long as water is stored in disconnected
water pockets, runoff generation is inhibited. Furthermore,
not only canopy but also forest floor interception plays a
significant role in the hydrological cycle. As only the effec-
tive rainfall is transformed into runoff, the inferred effective
rainfall will normally be underestimated because of intercep-
tion losses. Although we preprocessed the measured radar
data by implementing seasonally variable interception thresh-
olds, we cannot explain the observed bias by the process of
interception alone. The scattering is significantly reduced af-
ter implementing thresholds of soil wetness conditions. We
attribute this reduced scatter to significant reductions in the
residual capacity of unsaturated storage compartments as soil
layers in the subsurface become connected.

7. Conclusions

[46] Comparisons with radar rainfall data show that
Kirchner’s doing hydrology backward approach could be
successfully applied in the densely instrumented Alzette
catchment of Luxembourg. The average correlation
between predicted and inferred effective daily precipitation
was 0.8 when Kirchner’s original method was applied to
24 subbasins in the Alzette catchment. However, imple-
menting a soil moisture threshold led to a stepwise improve-
ment of the results, with the average correlation rising from

20 c) Wollefsbach at Useldange (20)

—— Sim (80%)
15} ; J

0 2 4 6 8 10 12 14
Days since February 23rd

Figure 11. Precipitation time series of inferred (80%
SWI) versus measured effective daily rainfall rates in (a) the
Mess catchment at Pontpierre (8), (b) the Mamer basin at
Mamer (15), and (c) the Wollefsbach at Useldange (20) dur-
ing the event of 23 February through 8 March 2007.

0.8 to 0.91 under wet conditions (as indicated by a soil
moisture index of 80% or higher). Model results for the 24
Alzette basins mostly confirm what has been observed in
Luxembourg as hydrological behavior and functioning in
the different test basins; thus the results seem to corroborate
Kirchner’s [2009] assertion that the approach can be a valu-
able tool for diagnosing catchment behavior. If the perform-
ance of the model shows a systematic failure in one specific
catchment one can infer that the catchment cannot be char-
acterized by a single nonlinear storage-discharge relation,
or, as in the cases of the Kaylbach and Dudelingerbach
catchments, one can infer that there are significant sources
or sinks that have not been accounted for. Similarly, event-
specific outliers (e.g., Figures 7-9) can indicate that some-
thing is wrong with either the discharge or rainfall data for
those specific events. Reliable rating curves and high-preci-
sion water level monitoring systems indeed are a prerequi-
site for doing hydrology backward. The more discharge
data is available, the more robust the fitted g(Q) function
should be, especially during extreme events. The excellent
results obtained for the Alzette basin at Ettelbrueck (2), at a
drainage area of more than 1000 km?, and in several other
geologically complex basins of more than 200 km?, suggest
that Kirchner’s approach can be successfully applied in
mesoscale basins with heterogeneous lithology.
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