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[1] In mountainous drainage networks, sediment mobilized on hillslopes must first pass
through steep streams before reaching lower-gradient channels. The bed of steep channels is
typically composed of large, relatively immobile boulders and finer, more mobile gravel.
Most sediment transport equations overpredict sediment flux in steep streams by several
orders of magnitude because they do not account for the stress borne by immobile grains
and the limited availability of the more mobile sediment. We previously developed and
tested (in flume experiments) a sediment transport equation that accounts for these two
effects. Here we modify the Parker (1990) bed load equation to include the resistance borne
by steps and selective transport of the relatively mobile sediment using a range of hiding
functions. We test a number of resistance equations and hiding functions, combined with
our modified and the original Parker equations, against measured flow and sediment
transport in three steep channels. Our modified sediment transport equation generally
predicts the transported sediment volumes to within an order of magnitude of the measured
values, whereas the unmodified equations do not. The most accurate sediment flux
predictions were obtained from using our modified equation, combined with a hiding
function that calculates highly selective transport of the relatively mobile sediment.
Furthermore, this hiding function has a critical Shields stress that is similar to those reported
for lower gradient channels. The effects of the immobile steps on flow and sediment
transport are not adequately captured by simply increasing the critical Shields stress to
values reported in steep streams.

Citation: Yager, E. M., W. E. Dietrich, J. W. Kirchner, and B. W. McArdell (2012), Prediction of sediment transport in step-pool

channels, Water Resour. Res., 48, W01541, doi:10.1029/2011WR010829.

1. Introduction
[2] In mountainous drainage basins, the majority of

small tributaries are steep, rough-bedded streams that
directly border hillslopes and receive sediment prior to
other channels in the network. Thus, steep streams partially
dictate the timing and magnitude of sediment delivery to
downstream, lower-gradient channels. To accurately pre-
dict future changes in river systems, calculations of sedi-
ment routing [e.g., Benda and Dunne, 1997; Ferguson
et al., 2006; Sklar et al., 2006] and landscape evolution
[e.g., Howard et al., 1994; Tucker and Whipple, 2002]
must include sediment transport processes in steep chan-
nels. In very steep channels (>�10%), periodic debris
flows cut bedrock channels and may primarily control sedi-
ment transport [e.g., Stock and Dietrich, 2003] although
fluvial processes still dominate sediment transport in some
streams [Rickenmann, 1997; D’Agosinto and Lenzi, 1999;
Turowski et al., 2009]. Both of these sediment transport

processes in steep streams are poorly understood but here
we limit our discussion to fluvial bed load transport. Bed
load transport equations developed for lower-gradient
channels typically overpredict fluvial sediment transport
rates in steep streams by several orders of magnitude [e.g.,
Bathurst et al., 1987; Rickenmann, 1997; D’Agostino and
Lenzi, 1999; Yager et al., 2007; Mueller et al., 2008]. Such
equations do not perform well in steep streams because
these channels differ from lower-gradient reaches in several
ways.

[3] Steep streams have wide grain-size distributions that
include finer, more mobile sediment and large, relatively
immobile grains (Figure 1). The large grains are typically
arranged into cascades or steps, which protrude through
the flow surface during sediment transport events. Thus,
large grains increase flow resistance [e.g., Bathurst, 1985;
Wiberg and Smith, 1991; Marcus et al., 1992] and cause
deviations from the commonly assumed logarithmic veloc-
ity profile [Wiberg and Smith, 1991; Byrd and Furbish,
2000; Byrd et al., 2000; Wohl and Thompson, 2000]. Com-
monly used resistance equations do not accurately predict
flow depth and shear stress in steep streams. Errors in shear
stress are magnified in sediment transport predictions
because sediment flux is typically assumed to increase non-
linearly with excess shear stress (shear stress minus critical
shear stress, which is the stress needed to mobilize sedi-
ment). The dimensionless critical shear stress (critical shear
stress normalized by grain weight, see equation (A5) in the
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appendix) may be relatively high in steep streams because
of the effects of immobile particle resistance, grain inter-
locking, and decreased turbulence intensities in these
channels [e.g., Bathurst et al., 1987; Buffington and Mont-
gomery, 1997; Church and Zimmermann, 2007; Lamb
et al., 2008; Mao et al., 2008].

[4] Many sediment transport equations also are based on
the assumption that most grain sizes on the bed are poten-
tially mobile. In steep streams, finer, more mobile sediment
is transported over large, relatively immobile grains that
rarely move [e.g., Lenzi et al., 1999; Garcia et al., 1999;
Yager, 2006]. Sediment transport equations only perform
moderately well in steep channels when all grain sizes,
including the boulder steps, move during large floods
[Bathurst et al., 1987; Rickenmann, 1997; D’Agostino and
Lenzi, 1999]. In addition, these equations are based on the
assumption of an unlimited availability of bed sediment for
transport, although the sediment supply may be highly epi-
sodic from infrequent landslides and debris flows [e.g.,
Bathurst et al., 1986; Benda and Dunne, 1997].

[5] Yager et al. [2007] developed a sediment transport
equation that accounts for the effects of large, relatively
immobile grains and limited sediment availability. This
sediment transport equation predicted the sediment flux to
within an order of magnitude of the measured values when
tested in a steep laboratory flume [Yager et al., 2007].
Although it performed well in flume experiments, this
equation has two assumptions that limit its application in
natural streams. It does not account for partial and size
selective transport, which occur in steep streams [Lenzi
et al., 1999; Garcia et al., 1999; Lenzi, 2001, 2004; Mao
et al., 2008; Yager, 2006]. During partial transport, a por-
tion of the grain-size distribution, usually the coarse grains,
remains immobile whereas selective transport denotes a
bed load grain-size distribution that is typically finer than
that of the bed (following the definitions by Parker
[2008]). The sediment transport equation of Yager et al.
[2007] also represents the relatively immobile grains as iso-
lated roughness elements with a characteristic spacing, and
is only applicable for cascade channels. In many steep

streams, immobile grains are clustered into steps that span
a large portion of the channel width.

[6] Here we modify the sediment transport equation of
Yager et al. [2007] to include the effects of immobile-grain
steps and selective transport. We then test a number of
sediment transport equations and hiding functions using
measured sediment flux events in two well- instrumented
steep streams. Sediment transport predictions in these
streams are reasonably accurate if they include the effects
of immobile grains and the limited availability and selec-
tive transport of the relatively mobile sediment. Independ-
ent modification of only hiding functions to indirectly
account for the effects of the immobile grains does not sig-
nificantly improve sediment flux predictions.

2. Stress-Partitioning and Sediment
Transport Equations

[7] Yager et al. [2007] partitioned the total shear stress
between the stresses borne by the immobile and mobile
sediment. The large, immobile grains bear a significant
fraction of the total shear stress (�50% in the Erlenbach,
one of our field sites) and reduce the stress available to
transport the finer, more mobile sediment. Yager et al.
[2007] also assumed the portion of the bed covered by
mobile sediment is a proxy for local sediment availability.
They then developed a set of stress-partitioning and sedi-
ment transport equations for steep, rough streams. We mod-
ify these equations to include immobile-grain steps and
selective transport of the relatively mobile sediment.

2.1. Stress-Partitioning Calculation

[8] Our stress-partitioning equations are similar to those
used by Yager et al. [2007] and the changes are listed in the
appendix. We divide the bed into two fractions: large, rela-
tively immobile grains with a characteristic diameter (D)
and finer, more mobile sediment (Figure 2). The immobile
grains are closely packed in the cross-stream direction
(�y ¼ D in Figure 2) into steps that have an average down-
stream spacing of �x (Figure 2). Within a single step, we
assume the more downstream immobile grains bear little
drag because the upstream grains shelter them from the
flow. We combine all grains within a step into one row of
cylindrical immobile grains with an average downstream
length (�w). We also average over the considerable varia-
tion in downstream step spacing [Zimmermann and
Church, 2001] to make predictions at the reach scale.

[9] We partition the total boundary shear stress (� t)
between the stress on the immobile grains (� I) and the
stress on the mobile sediment (�m). Plunging flow over
steps (spill resistance) also dissipates considerable energy
[Curran and Wohl, 2003; Wilcox et al., 2006], but spill
resistance equations currently lack field calibration and
use many parameters [e.g., Moore, 1943; Rouse, 1943;
Gill, 1979; Rajaratham and Chamani, 1995; Hoffman,
1998; James et al., 2001]. Such parameters require
detailed empirical calibration that is beyond the scope of
our study. Therefore, we assume spill resistance influen-
ces the pressure and velocity distributions around immo-
bile grains and incorporate it into the drag coefficient of
these particles.

Figure 1. Photograph of the Erlenbach in Switzerland
(�4 m in length). The bed is composed of large, relatively
immobile grains and finer, more mobile sediment.
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[10] The solution to our stress-partitioning equations (see
the appendix for details) is given by

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gS�xh3
a

AIFCI

w þCmð�x � �wÞ

s
; (1)

where q is discharge per unit width, ha is reach-averaged
flow depth, g is gravitational acceleration, w is channel
width, S is reach-averaged water-surface slope, AIF is the
total bed-perpendicular area occupied by immobile grains,
and Cm and CI are drag coefficients for the mobile and
immobile sediment, respectively. The distance from the top
of the average sediment (both mobile and immobile) de-
posit to the water surface (ha) includes the flow between
and over immobile grains and steps.

[11] We calculate ha for a given flow discharge using
equation (1) and an equation for AIF (see equation (A4) in
the Appendix), which is a function of ha and the bed-
perpendicular height of the mobile sediment that is directly
upstream of steps (zmu, Figure 2). This height represents
the degree of step burial by relatively mobile sediment and

is calculated by measuring the upstream protrusion of the
immobile steps (averaged over the reach, see section 3.1.2)
and subtracting it from D. To calculate ha using equations
(1) and (A4), we must iterate the value of ha until the pre-
dicted discharge from (1) equals the measured discharge.
This combination of equations requires estimates of seven
reach-averaged variables (w, S, q, D, zmu, �x, and �w), and
two drag coefficients (Cm and CI). Once we know ha, we
then calculate the total shear stress,

�t ¼ �ghaS; (2)

where � is the water density, and the stress borne by mobile
sediment,

�m ¼
�CmU2

2
; (3)

where U is the reach-averaged flow velocity (q/ha).
[12] We use ha instead of the hydraulic radius (R)

because the use of R would require that we partition the
total shear stress between the walls and the immobile and
mobile sediment. The addition of a wall resistance equation
(see Buffington and Montgomery [1999a] for an example)
makes our stress-partitioning equations underdetermined
and unsolvable for most applications where only the flow
discharge is known. To demonstrate that we can neglect
wall roughness, we can solve the stress-partitioning equa-
tions that include wall roughness because we have meas-
ured the flow hydraulics (ha and U) in the Erlenbach torrent
(see section 3.1.3). We used equation (15) from Buffington
and Montgomery [1999a] in our stress-partitioning equa-
tions, and replaced ha with R in equation (2), to estimate
the percent of the total fluid force that could be attributed
to wall roughness. The contribution of wall roughness var-
ied between 1% of the total fluid force at base flow to a
maximum of 4% during a flood with a �50 yr recurrence
interval. Thus, although steep channels may be relatively
narrow, wall roughness may be neglected because its resist-
ance contribution is small relative to that caused by steps
and plunging flow.

2.2. Prediction of Bed Load Transport Rates

[13] Yager et al. [2007] modified the Fernandez Luque
and Van Beek equation [Fernandez Luque and Van Beek,
1976] such that the sediment transport rate depends on: the
stress on the mobile sediment rather than the total shear
stress, the median grain size of the mobile sediment (D50m)
rather than that of the entire bed, and the proportion of the
bed occupied by mobile sediment (Am/At) to account for
sediment availability. Their equation does not allow for
partial and selective transport of sediment, which occur in
many steep streams [e.g., Garcia et al., 1999; Lenzi, 2004;
Ryan et al., 2005; Lenzi et al., 2006; Mao et al., 2008;
Yager, 2006]. We therefore used the surface-based sedi-
ment transport equations of Parker [1990] to calculate
selective transport (see the appendix for original equa-
tions). Sand is assumed to be a relatively minor fraction of
the bed load, and we did not estimate its fraction of the bed
surface and neglect it here.

[14] We modified the Parker [1990] equations such that
they depend on: the stress borne by the mobile sediment

Figure 2. The (a) cross-sectional and (b) plan view of the
bed configuration used in the stress-partitioning equations.
w is the channel width and zmu is the reach-averaged, bed-
perpendicular height of the mobile sediment immediately
upstream of the steps. This is the depth of sediment that
partially buries the immobile grains. The immobile grains
have a characteristic diameter (D), upstream protrusion
(pu), downstream length (�w), downstream spacing (�x),
and cross-stream spacing (�y).
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instead of the total shear stress, the grain-size distribution
of the relatively mobile sediment instead of that of the
entire bed, and the fraction of the bed surface that is cov-
ered by mobile sediment (Am/At). Details on this modifica-
tion are provided in the appendix. The modified equations
require predicted values of �m (from equation (3)), and
measured values of Am/At and the grain-size distribution of
the relatively mobile sediment. If the bed is divided into
patches of sediment, a composite grain-size distribution for
all relatively mobile patches is needed because the above
equations use reach-averaged parameters for shear stress
and grain size.

3. Field Measurements
[15] We used three different field locations (Fox Creek,

and the Erlenbach and Rio Cordon torrents) to test our
stress-partitioning and bed load transport equations. In the
Erlenbach, we measured flow conditions and channel bed
properties to calibrate the drag coefficients in our stress-
partitioning equations. We also measured tracer particle
movements to develop a calibrated hiding function for the
Erlenbach. We then tested our combined stress-partitioning
(calibrated to the Erlenbach) and bed load transport equa-
tions (using a range of hiding functions) against measured
sediment transport volumes. In Fox Creek, we measured
flow and bed properties to independently test our calibrated
stress-partitioning equations and other resistance equations.
Finally, in the Rio Cordon, we use previously published
data on channel bed properties, flow hydrographs, and
transported sediment volumes and grain sizes to test
our combined stress-partitioning and bed load transport
equations.

3.1. Erlenbach

[16] The Erlenbach torrent is a small (drainage area of
0.74 km2), steep (9.8% gradient in our measurement reach)
stream in Switzerland (Latitude of 47.0454, Longitude
of 8.7082). The Swiss Federal Institute for Forest, Snow,
and Landscape Research (WSL) has continuously moni-
tored water discharge and sediment transport rates in the
Erlenbach since 1978 and 1986, respectively [Hegg et al.,
2006]. Snowmelt, rain-on-snow, and high-intensity summer
storms cause about 20 sediment transport events each year
[Rickenmann, 1997]. The average sediment yield in the
Erlenbach is�570 m3 km�2 yr�1 (volume includes porosity),
which is a minimum estimate because the WSL only meas-
ures a portion of the suspended load.

3.1.1. Sediment Transport Rates
[17] Geophone-based bed load impact sensors, herein-

after called bed load sensors, record sediment transport
rates in a cross section that is directly upstream from a sedi-
ment retention basin (see Rickenmann and McArdell
[2007] for details). The total number of impulses, a mea-
sure of the energy imparted to the bed by impacting grains,
by grains larger than 1 cm are recorded at minute intervals
by the array of bed load sensors if the impulses exceed
4/min [Turowski and Rickenmann, 2011]. The bed load
sensor impulses have been calibrated to annual or biannual
sediment-volume changes in the retention basin [Ricken-
mann, 1997; Rickenmann and McArdell, 2007; Turowski
and Rickenmann, 2011]. Twelve bed load sensors operated

from 1986 to 1999 and then were replaced by nine new bed
load sensors. Rickenmann and McArdell [2007] developed
a calibration for events prior to 2002 and a similar unpub-
lished calibration [J. M. Turowski and D. Rickenmann,
pers. comm.] is available for events after 2002. Further in-
formation on the calibration and uncertainty of the bed load
sensors is detailed by Rickenmann [1997], Rickenmann and
McArdell [2007], and Turowski and Rickenmann [2011].

[18] The channel bed properties (protrusion, grain sizes)
used in our transport predictions are sensitive to the relative
sediment supply (see section 3.1.2). We therefore limited
our analysis of sediment transport data to events between
2002 and 2006, which bracket our 2004 measurements of
streambed characteristics by 2 years. The sediment yield
from the Erlenbach was relatively constant over this time
period and was much larger in the preceding and subse-
quent years [see Turowski et al., 2009]. We excluded any
events with less than 3 m3 of transported sediment (�50%
of the events during our analysis period) because the bed
load sensor calibration was not developed for low sediment
yield events [Rickenmann and McArdell, 2007; D. Ricken-
mann, personal communication]. We also limited our sedi-
ment flux predictions in each event to only include grain
sizes larger than 1 cm because this is the smallest size that
the bed load sensors can measure. We converted the meas-
ured transported volumes to the equivalent volumes pre-
dicted by bed load transport equations by including the
effects of porosity, which we assumed to be 40%.

[19] To test and calibrate our stress-partitioning and sedi-
ment transport equations, we supplemented the WSL’s data
with measurements of flow depth, flow velocity, and bed
properties (width, slope, height of mobile sediment, grain
sizes, and immobile-grain spacing).

3.1.2. Bed Properties
[20] Our 40-m long study reach was directly upstream of

the bed load sensors and downstream from a tributary junc-
tion. We used a total station to measure the bed slope
(0.098) along the thalweg and the outlines and elevations
of patches (see Yager [2006] for a map of the patches). A
given patch class was named by the grain sizes (gravel,
cobble, boulder) present within the patch and each size was
only included if it was more than 5% of the patch area. The
grain sizes were listed in order of increasing frequency on a
patch and the dominant size was capitalized (e.g., gravel-
Cobble) [Buffington and Montgomery, 1999b]. We con-
ducted at least one pebble-count (with �100 grains) on
each of seven patch classes and then divided all 63 identi-
fied patches into immobile steps or relatively mobile sedi-
ment. The pebble counts were primarily through the grid
method, in which the grid spacing was defined by the grain
size on each patch. We measured all boulders and large
cobbles in every step to obtain enough measurements (134)
to define the step grain-size distribution.

[21] We classified immobile steps using a combination of
our own criteria and the method developed by Zimmermann
et al. [2008]. Our criteria were that a step needed to be
relatively immobile and therefore should be Boulder or
boulder-Cobble patches, which were composed of the larg-
est grain sizes on the bed. Steps also spanned at least half
the channel width to eliminate individual boulders or small
boulder clusters from being classified as steps. Finally,
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steps had a minimum pool length (10% of bankfull width)
and minimum step drop height (3.3% of bankfull width), as
defined by Zimmermann et al. [2008]. Although Zimmer-
mann et al. [2008] included a number of other possible cri-
teria, their step classification was most sensitive to the
minimum pool length and drop height and we only use
these two measures to simplify step delineation. Our classi-
fication resulted in 10 steps (Figure 3a) and the relatively
mobile sediment included all of the other patches. We cal-
culated the reach-averaged grain-size distribution as the
area-weighted sum of the grain-size distributions of all
patches, including steps (Figure 3b). The grain-size distri-
bution of relatively mobile sediment was the area-weighted
sum of all patches excluding steps.

[22] We used our total station survey to calculate a num-
ber of other parameters (Am/At, D, pu, �x, �w, w) required
to predict sediment flux. The proportion of the bed area
occupied by mobile sediment (Am/At) was the total bed-
parallel area of mobile patches (Am) divided by the total
bed area (At). The characteristic grain size of the immobile

grains (D) was the median grain size of the steps. The
reach-averaged protrusion (pu) was the average difference
between 108 paired elevation measurements of the
upstream edges of steps and the neighboring downstream
boundaries of mobile patches. The reach-averaged height
of the relatively (upstream) mobile sediment (zmu) was
D-pu (Table 1). The downstream spacing between steps
(�x) was the total reach length (40 m) divided by the total
number of steps (10). The downstream step length (�w) was
the total surveyed bed-parallel step area divided by the
average channel width and number of steps (Table 1). We
used a constant width in our calculations because the con-
fined nature of our study reach did not allow width to
significantly vary during sediment transporting flows.

3.1.3. Flow Measurements and Calibration of
Drag Coefficients

[23] We installed a staff plate in each of three surveyed
cross-sections and measured the water surface elevation at
each plate throughout seven flow events for a total of 69
measurements in each section. We combined these staff
plate data with the corresponding automated measurement
(10 min intervals) of flow discharge (uses stage-discharge
rating curve) at the downstream end of our reach. For a
given flow discharge, the flow depth at each staff plate was
an average of maximum and minimum estimates of an
unsteady water surface. We developed rating curves
between the average flow depth in each cross section and
the discharge (see Yager [2006] for details). For each meas-
ured discharge, we used these rating curves and surveyed
cross sections to calculate the width (W), average flow
depth (ha), and flow velocity (U) at each cross section, and
for the entire reach. For a given discharge, the reach-
averaged flow velocity from this method was similar to that
measured using a conductivity probe and dilute saline
solution [e.g., Calkins and Dunne, 1970; Day, 1977a,
1977b; Luk and Merz, 1992; Abrahams and Atkinson,

Figure 3. Erlenbach torrent. (a) Immobile-grain steps
(dashed gray lines) along the longitudinal profile (solid
black line) in the study reach. The upstream and down-
stream ends of the reach were limited by a tributary junc-
tion and fixed cement section, respectively. (b) Grain-size
distributions of the relatively mobile sediment, immobile
grain steps, and the entire bed (includes immobile-grain
steps).

Table 1. Field Measurements Used to Predict Sediment Transport
and Flow Conditionsa

Parameter Erlenbach Rio Cordon Fox Creek

Slope (%) 9.8 17 5.0
Width (m) 4.7 5.7 5.6
D50 (mm) 141 129 108
D84 (mm) 494 362 221
D50m (mm) 60 86 19
D84m (mm) 178 176 88
Am/AT 0.67 0.90 0.85
zmu (m) 0.31 6 0.01 0.27/0.40b 0.22
pu (m) 0.13 6 0.01 0.41/0.28b 0.19
D (mm) 442 680 413
�x (m) 4.0 6.95 5.4
�w (m) 1.3 0.68 0.83
Cm 0.44 6 0.9 0.44 6 0.9 0.44 6 0.9

a‘‘m’’ denotes the relatively mobile sediment. Parameters are the median
grain size (D50), 84th percentile of the grain size distribution (D84), propor-
tion of the bed covered by mobile sediment (Am/AT), depth of the mobile
sediment (zmu), and the immobile-grain: protrusion (pu), mean diameter
(D), downstream spacing (�x), and downstream length (�w). Uncertainties
in zmu, Cm, and pu are standard errors.

bDenotes that two different values of protrusion and zmu in the Rio Cor-
don were used in all sediment transport equations shown in Table 2 (see
text for details).
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1993; Li and Abrahams, 1996; Lee and Ferguson, 2002;
Curran and Wohl, 2003; Yager, 2006].

[24] Our stress-partitioning equations require two drag
coefficients (Cm and CI) to predict the reach-averaged
flow hydraulics (ha, U, �m, and � t). We calibrated Cm

(0.44) using the measured flow (discharge, velocity, and
depth) and bed grain size in a steep stream with relatively
few boulders. We then used the measured flow and channel
bed conditions (e.g., step spacing, grain size, and protru-
sion) in the Erlenbach to calibrate CI over a range of flow
discharges. Further information on the drag coefficient cali-
bration can be found in the appendix.

3.1.4. Hiding Function Calibration
[25] The hiding function (equation (A9)) in the Parker

[1990] equations was empirically calibrated to measure-
ments in Oak Creek, a relatively low-gradient stream
[Parker, 1990], and can vary significantly between streams
or experiments [e.g., Parker et al., 1982; Wilcock and
Southard, 1988; Ashworth and Ferguson, 1989; Parker,
1990; Ashworth et al., 1992; Kunle, 1980; Wilcock, 1993;
Wathen et al., 1995; Wilcock and Crowe, 2003; Mao et al.,
2008]. We therefore calibrated hiding functions in the
Erlenbach using tracer particle movements during five flow
events. Further details on the hiding function calibration
are provided in the appendix.

[26] We assume that we can replace the hiding functions
in the original and modified Parker equations with those
calibrated in the Erlenbach. We make this assumption
because we do not have volumetric grain-size data for the
transported sediment in the Erlenbach. If we had such data,
we could recalibrate the entire set of Parker equations. We
acknowledge that all of the Parker [1990] equations were
developed together and to properly modify these equations
we should not just alter the hiding function. However, we
have performed this calculation to determine if altering the
hiding function would be a useful approach. We replaced
the hiding function in the original Parker equations with

�i ¼ !�sgo
Di

Dsg

� ��0:377

; (4)

and in the modified Parker equations with

�mi ¼ !m�sgom
Di

Dsgm

� ��0:845

: (5)

The value for the dimensionless reference stress (��rsgo) was
also calibrated and was replaced with 0.14 and 0.07 for the

original and modified Parker equations, respectively. These
two hiding functions were obtained using the same tracer
particle measurements in the Erlenbach but they were refer-
enced to either the total or mobile grain-size distributions
of the bed for the original and modified Parker equations,
respectively. A number of different hiding function and
sediment transport equation combinations were tested (see
section 3.3 for details) and each of these combinations is
shown in Table 2.

3.2. Rio Cordon

[27] To provide a further test of our combined stress-
partitioning and sediment transport equations, we used
reach-averaged values for w, S (from Lenzi et al. [2004]),
D, downstream protrusion, and �x (from Lenzi [2001])
measured in the Rio Cordon, an instrumented watershed in
Italy (Table 1). We also used the flow hydrographs and
transported sediment volumes (from Lenzi et al. [1999]),
and bed and bed load grain-size distributions (from Mao
and Lenzi [2007]) in previously published literature. This is
the only steep channel for which we could find publicly
available data that allow us to calculate sediment transport
rates using our stress partitioning equations. No other pub-
lished data sets on steep channels contain detailed measure-
ments of the step properties, flow hydrographs, grain-size
distribution of the channel bed, and transported sediment
volumes; most publications only contain a portion of the
necessary data [e.g., Whiting et al., 1999; Lee and Fergu-
son, 2002; Gomi and Sidle, 2003; Marion and Weirich,
2003; MacFarlane and Wohl, 2003].

[28] The relatively mobile grain size for the Rio Cordon
was not measured. To determine this distribution, we first
calculated the proportion of the bed covered by the rela-
tively immobile sediment using equation (A16) and the
measured step characteristics (Table 1). We then assumed
that this same proportion of the total grain-size distribution
was only from the immobile steps rather than being part of
both the mobile and immobile sediment. We eliminated
this percentage of the coarsest grain sizes (which resulted
in the removal of grains coarser than 360 mm) to obtain the
grain-size distribution of the mobile sediment. We also
assumed that �w was equal to one immobile grain diameter
(Table 1) because it was not measured. Finally, only the
downstream step height was measured in the Rio Cordon,
whereas we require the upstream step protrusion to predict
the sediment flux. In the Erlenbach, the upstream step pro-
trusion (D-zmu) can be 28%–42% of the downstream step
height, depending on the relative sediment availability
[E. M. Yager, unpublished data]. We therefore calculated

Table 2. Matrix of Sediment Transport Equations, Hiding Functions, and Parameters Used in each Bedload Calculationa

Equation/Hiding Function (hf) Hiding Function Coefficient Hiding Function Exponent Grain Size Distribution Shear Stress

Parker/Parker hf 0.0386 �0.9049 Total Total
Parker/Erlenbach hf (total bed) 0.14 �0.62 Total Total
Modified Parker/Parker hf 0.0386 �0.9049 Mobile Mobile
Modified Parker/Erlenbach hf (mobile) 0.07 �0.16 Mobile Mobile
Parker/Rio Cordon hfb 0.189 �0.639 Total Total
Modified Parker/Rio Cordon hfb 0.189 �0.639 Mobile Mobile

aGrain size distribution denotes the distribution used to calculate sediment flux where ‘‘total’’ is the entire bed and ‘‘mobile’’ is all patches except the
immobile steps (see Figure 3b). For shear stress, total (equation (2)) and mobile (equation (3)) are the shear stresses used to calculate bedload transport.

bDenotes that the Rio Cordon hiding function was only used in the Rio Cordon predictions.
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two possible end members for the upstream step protrusion
in the Rio Cordon and test these two values in our transport
calculations.

3.3. Prediction of Sediment Flux in the Erlenbach
and Rio Cordon

[29] To predict the sediment fluxes for each event in the
Rio Cordon and Erlenbach, we first calculated ha using
equation (1), calibrated values for CI and Cm (see the ap-
pendix), and the measured flow hydrographs, S, W, D, �x,
�w, and zmu (Table 1). We then used these flow depths to
determine the total shear stresses (equation (2)) and stresses
on the mobile sediment (equation (3)) throughout each
hydrograph. The stresses on the mobile sediment, the frac-
tional bed area occupied by mobile sediment (Am/At), and
the mobile grain sizes were used in the modified Parker
equations. The original Parker equation (see the appendix)
requires total shear stresses and the grain sizes of the entire
bed to predict sediment fluxes.

[30] We made four different predictions of bed load flux
for each sediment transport event in the Erlenbach, using
different combinations of sediment transport equations and
hiding functions (see Table 2). In the original Parker equa-
tion, we used either the original (equation (A9)) or Erlen-
bach-calibrated hiding function for the entire bed (equation
(4)). For the modified Parker equation, we used either the
original (equation (A9)) or Erlenbach-calibrated hiding
function for the mobile sediment (equation (5)). A list of
the hiding function exponents and coefficients and the rele-
vant shear stress and grain size distributions for each combi-
nation of sediment transport equations and hiding functions
is given in Table 2.

[31] In the Rio Cordon, we used all of the above combi-
nations of equations but also added a Rio Cordon hiding
function, which was developed using the total shear stress,
tracer particle movements, and the grain-size distribution of
the entire bed [Mao and Lenzi, 2007]. Although this hiding
function is for the entire bed, we tested it in both the origi-
nal and modified Parker equations to provide a range of
tested hiding function exponents and coefficients. Thus, in
each sediment transport equation (original or modified
Parker) we used three different possible hiding functions
(original Parker, Erlenbach, or Rio Cordon, see Table 2 for
values) for a total of six different equation combinations.
We used two different values of protrusion in all six of
these equation combinations to better understand the impact
of our protrusion uncertainty in the Rio Cordon on sediment
flux predictions. There were therefore a total of 12 bed load
transport predictions for each event in the Rio Cordon.

[32] For each event, the total transported sediment vol-
ume was the sum of the predicted fluxes (in m2 s�1) for
each measured discharge (above a base flow of 0.1 m3 s�1,
which was far below the threshold for gravel entrainment)
multiplied by the measurement duration and channel width.
In the Erlenbach (16 events) and Rio Cordon (six events),
we assumed channel conditions (S, W, D, �x, �w, zmu, and
grain-size distributions) did not change between the events.

3.4. Measurement and Prediction of Flow in
Fox Creek

[33] To independently test our calibrated stress-partition-
ing equations, we measured the flow hydraulics, grain size,

and step characteristics in Fox Creek, a tributary of the Eel
River in northern California (Table 1). We made a patch
map that included the bed topography, longitudinal profile,
step spacing, and protrusion. We also conducted pebble
counts on each patch class and divided the bed between
immobile steps and relatively mobile sediment. We meas-
ured the flow depth using a pressure transducer installed in
a cross section and measured the flow velocity using a
dilute salt tracer and conductivity probe. We followed the
methodology outlined in section 3.1.2 for all of these
measurements.

[34] We calculated the measured friction factor (f) using
13 simultaneous measurements of flow velocity and flow
depth for flow discharges that ranged from base flow
(�0.09 m3 s�1) to near bankfull (�0.9 m3 s�1). We pre-
dicted f using our stress partitioning equations with drag
coefficients that were calibrated to the Erlenbach. We also
used published resistance equations by Lee and Ferguson
[2002], Rice et al. [1998], Zimmermann [2010], and Jarrett
[1984]. In all of these resistance (except Zimmermann) and
our stress partitioning equations, we iteratively solved for
the flow depth using the measured discharge, grain size,
and step characteristics (when applicable).

4. Results
4.1. Test of Calibrated Stress-partitioning Equations

[35] We first test our calibrated (to the Erlenbach) stress-
partitioning equations and a number of other resistance
equations in Fox Creek. The measured friction factor (f)
declined rapidly as a power function of increasing flow dis-
charge, with relatively small decreases in f at higher flows
(Figure 4). Our stress partitioning equation captured the
overall relationship between the friction factor and unit dis-
charge. All other resistance equations did not predict a
large change in the friction factor with increasing flow

Figure 4. The measured and calculated friction factors in
Fox Creek as functions of the unit discharge. Measured
(circles) and predicted values from the Lee and Ferguson
(solid gray line), Jarrett (dashed black line), Rice (dashed
gray line), Zimmermann (dotted gray line), and our cali-
brated (to the Erlenbach) stress partitioning (solid black
line) equations are shown.
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discharge, and systematically underpredicted the friction
factor. Our stress partitioning equation had a root-mean-
square error (RMSE) in predicted f of 11, which was the
lowest value of all tested resistance equations. The equation
of Jarrett had the next lowest RMSE of 18 and all other
equations had a RMSE greater than 20. This independent
test of our stress-partitioning equations suggests that they
can predict flow hydraulics fairly accurately and may be
used to calculate sediment flux.

4.2. Prediction of Sediment Flux in the Erlenbach

[36] The original Parker equation, with the original hid-
ing function, overpredicted the measured sediment volumes
by several orders of magnitude for 47% of the measure-
ments (Figure 5) and was within an order of magnitude
53% of the time (Table 3). Our modified Parker equation,
with the original hiding function, underpredicted the sedi-
ment volumes by several orders of magnitude for 20% of
the measurements and was within an order of magnitude of
the measured values for 80% of the data (Figure 5). We
now determine if the modified and original Parker equa-
tions perform better with the calibrated hiding functions

(equations (5) and (4), respectively) for the Erlenbach.
The original Parker equation, combined with equation (4),
overpredicted the sediment volumes by several orders of
magnitude for 40% of the data points (Figure 5, Table 3).
The modified Parker equation, combined with equation (5),
predicted the sediment fluxes to within an order of magni-
tude of the measured values for 93% of the measurements
(Figure 5, Table 3).

[37] Calibration of hiding functions to the Erlenbach
increased the accuracy of both the original and modified
Parker equations. Regardless of the hiding function, the
original Parker equation systematically overpredicted sedi-
ment volumes whereas the modified Parker equation over-
predicted for �50% of the data points and therefore
straddled the measured values. Of all tested sediment trans-
port and hiding function equations, the modified Parker
equation, with the mobile-bed Erlenbach hiding function,
had the lowest root-mean-square error (RMSE).

4.3. Prediction of Sediment Transport in the
Rio Cordon

[38] The original Parker equation, with the original hid-
ing function, overpredicted the measured sediment volumes
by several orders of magnitude for 100% of the measure-
ments in the Rio Cordon (Figure 6a, Table 4). In general,
use of either the total-bed Erlenbach or Rio Cordon hiding
functions reduced the RMSE of the predicted sediment vol-
umes. Calculations using these hiding functions still caused
the original Parker equation to overpredict the measured
sediment volume by several orders of magnitude for 83%
of the data points (Table 4, Figure 6a). Use of different val-
ues for protrusion in the original Parker equation, regard-
less of hiding function, did not significantly alter the
performance of this equation.

[39] The modified Parker equation, with the original hid-
ing function and a high protrusion, underpredicted the sedi-
ment volumes by several orders of magnitude for 17% of
the measurements and was within an order of magnitude of
the measured values for 67% of the data (Figure 6b). Use
of the Rio Cordon and mobile-bed Erlenbach hiding func-
tions did not significantly alter the RMSE of the modified
Parker equation (Table 4). However, the modified Parker
equation, combined with the Rio Cordon hiding function,
increased the percent of predicted data points that were

Figure 5. The log of the ratio of the predicted to meas-
ured sediment volumes in the Erlenbach. The original
Parker equation with the original (P90) and Erlenbach (P90
E) hiding functions and the modified Parker equation with
original (P90m) and Erlenbach (P90m E) hiding functions
are shown. Negative and positive sediment volume ratios
represent sediment predictions that are greater or less than,
respectively, the measured values. The top and bottom of
each box represent the 25th and 75th percentiles of the data
points, respectively, and the line in the middle of each box
is the median, which demonstrates skewness of the data if
it is not centered in the box. The lines extending out of
each box denote the furthest limit of the data points. The
gray arrow and the corresponding text denote the percent of
the sediment volume predictions that are greater than the
measured values. Black arrows and the corresponding text
show the percent of the sediment volume predictions that
are not within an order of magnitude of the measured val-
ues. The solid and dashed horizontal lines represent pre-
dicted values equal to or within an order of magnitude of
the measured volumes, respectively.

Table 3. Prediction Errors for Sediment Flux Calculations in the
Erlenbacha

P90 P90 (E) P90m P90m (E)

RMSE (m3) 397 215 56 34
Within an order of magnitude (%) 53 60 80 93
Greater than (%) 100 100 53 47
Greater than an order of magnitude (%) 47 40 0 0
Less than an order of magnitude (%) 0 0 20 7
Within a factor of 2 (%) 0 7 13 27

a‘‘Within an order of magnitude’’ denotes the percent of the predicted sedi-
ment fluxes that were within an order of magnitude of the measured values.
‘‘Greater than’’ denotes the percent of the predictions that were greater than
the measured values. P90 and P90 (E) are the original Parker equation with
the original and Erlenbach (for the total sediment) hiding functions, respec-
tively. P90m and P90m (E) are the modified Parker equation with the original
and Erlenbach (for the mobile sediment) hiding functions, respectively.
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within an order of magnitude of the measured values to
83% (Figure 6b, Table 4).

[40] The modified Parker equation was relatively sensi-
tive to changes in the upstream step protrusion, depending
on the hiding function. Use of a low protrusion with the

original hiding function increased the RMSE and caused a
large systematic overprediction of the sediment flux. The
RMSE of the predictions using the mobile-bed Erlenbach
or Rio Cordon hiding functions did not vary significantly
with protrusion. However, more data points were system-
atically under- or over-predicted when a high or low protru-
sion, respectively, was used with the mobile-bed Erlenbach
hiding function (Figure 6b, Table 4). When a low protru-
sion was used with the Erlenbach hiding function, transport
predictions had similar accuracy to those using the modi-
fied Parker equation with the Rio Cordon hiding function.
It is likely that the mobile-bed Erlenbach hiding function
with a moderate value of protrusion would yield the opti-
mal combination of predictions straddling, and being to
within an order of magnitude, of the measured values.
Thus, both the choice of protrusion and hiding function can
significantly impact sediment volume predictions from the
modified Parker equation.

[41] Of all combinations of sediment transport equations
and hiding functions, the modified Parker equation, with ei-
ther the Rio Cordon (high or low protrusion) or mobile-bed
Erlenbach (low protrusion) hiding functions, had the largest
percentage of predictions within an order of magnitude of
the measured values (Table 4). Any version of the modified
Parker equation had significantly lower RMSE than any
version of the original Parker equation (see Table 4).

4.4. Comparison of Predicted and Measured
Transported Grain Sizes

[42] Five of the previously tested sediment transport
events in the Rio Cordon have measured transported grain
sizes, which we compare to the predicted grain-size distri-
butions for each event. The measured bed load grain-size
distribution progressively coarsened with increasing event
magnitude (Figure 7). For small magnitude sediment trans-
port events, the original Parker equation, when combined
with either the total-bed Erlenbach or Rio Cordon hiding
functions, predicted the transported grain sizes relatively
well (Figures 7a and 7b). Conversely, the transported grain
sizes during moderate to large events were predicted with
better accuracy using the modified Parker equation, com-
bined with either the original or Rio Cordon hiding func-
tions (Figures 7c–7e). The original Parker equation, when
combined with the original hiding function, did not accu-
rately predict the transported grain sizes for any event.

[43] With the exception of the event on 3 July 1989
(Figure 7c), the modified Parker equation, combined with
the mobile-bed Erlenbach hiding function, predicted the
transported grain sizes fairly accurately. This was the only
combination of sediment transport-hiding function equa-
tions that mimicked the trend of coarser transported grain
sizes with higher event magnitudes. Most other equations
over-predicted the transported grain sizes during small
magnitude events and underpredicted the sediment sizes
during large events (Figure 7). Furthermore, most of the
tested equations systematically over-predicted the D16 and
underpredicted the D84 (Table 5). The original Parker equa-
tion, combined with the total-bed Erlenbach or Rio Cordon
hiding functions, and the modified Parker equation, com-
bined with the mobile-bed Erlenbach hiding function, had
the lowest RMSE for all tested grain sizes (Table 5).

Figure 6. The log of the ratio of the predicted to meas-
ured sediment volumes in the Rio Cordon. (a) Predictions
using the original Parker equation with high and low pro-
trusions and the original (P90), Erlenbach (P90 E), and Rio
Cordon (P90 RC) hiding functions. (b) Predictions using
the modified Parker equation with high and low protrusions
and the original (P90m), Erlenbach (P90m E), and Rio Cor-
don (P90m RC) hiding functions. I denotes low protrusion,
all other equations used a high protrusion. The solid and
dashed horizontal lines represent predicted values equal to
or within an order of magnitude of the measured volumes,
respectively. See Figure 5 for an explanation of the box
properties.
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5. Discussion
5.1. Use of Stress-Partitioning Equations in Three
Steep Streams

[44] Unlike the original Parker equation, the modified
Parker equation predicted sediment volumes in the Erlen-
bach that: had a relatively low RMSE, straddled the meas-
ured values, and were within an order of magnitude of the
measured values for most of the data. This statement is true
for most combinations of hiding functions and sediment
transport equations (i.e., original or modified Parker equa-
tions). We stress that the modified Parker equation was not
calibrated to the transported sediment volumes in the Erlen-
bach. Only the Erlenbach hiding function was calibrated to
tracer particle movements, and the drag coefficient for the
immobile sediment (CI) was calibrated to yield the meas-
ured flow conditions in the Erlenbach. Although CI was
calibrated to the Erlenbach, our stress partitioning equa-
tions performed better in Fox Creek than all of the other
tested resistance equations. Furthermore, the modified
Parker equation significantly improved predictions of sedi-
ment flux in the Rio Cordon without any local calibration.
In this stream, the modified Parker equation had a much
lower RMSE, and a greater percentage of predictions
within an order of magnitude of the measured values, than
the original Parker equation (for all hiding function combi-
nations). The modified Parker equation accounts for the
effects of relatively immobile grains, limited sediment
availability, and size-selective transport. Other sediment
transport equations that account for these three effects may
also predict the sediment flux in the Erlenbach and Rio
Cordon fairly accurately.

5.2. Hiding Functions for Steep Streams

[45] We tested hiding functions with a wide range of
dimensionless reference shear stresses (0.0386 to 0.189)
and exponents (�0.16 to �0.9049; Table 2). In the Rio
Cordon, the modified Parker equation, combined with the
mobile-bed Erlenbach hiding function, generally predicted
sediment fluxes and transported grain sizes with the most
accuracy (Figures 6 and 7, Tables 4 and 5). It was only this
combination of equations that predicted the observed
increase in transported grain sizes with event magnitude. In
the Erlenbach, the combination of the modified Parker
equation and the mobile-bed Erlenbach hiding function also
predicted sediment fluxes better than all of the other tested
equation combinations. This hiding function is different

from those reported for both low-gradient and steep chan-
nels. The small exponent (�0.16) implies that the relatively
mobile sediment engages in highly selective transport
and that hiding effects are relatively unimportant. Thus, we
removed many of the hiding effects (e.g., large grains shel-
ter small grains) by directly accounting for the effects of
the large grains on the stress borne by the mobile sediment.

[46] The Rio Cordon hiding function also predicted the
transported sediment volumes in the Rio Cordon relatively
well, when combined with the modified Parker equation. It
did not predict the transported grain sizes as accurately as
the mobile-bed Erlenbach hiding function, although it was
calibrated to tracer particle movements in the Rio Cordon.
Unlike the mobile-bed Erlenbach hiding function, the Rio
Cordon hiding function predicted very little change in the
transported grain size distributions between events. This is
likely because the Rio Cordon hiding function has a higher
exponent that does not predict highly size-selective trans-
port. The Rio Cordon hiding function was also calibrated
for the entire bed rather than the mobile sediment.

[47] The critical Shields stress in the Erlenbach hiding
function (��rsgo ¼ 0.07) is within the upper range of values
reported for lower-gradient streams [e.g., Buffington and
Montgomery, 1997]. ��rsgo generally increases with lower
relative submergences and higher channel slopes [e.g.,
Ashida and Bayazit, 1973; Aguirre-Pe, 1975; Graf and
Suszka, 1987; Aguirre-Pe and Fuentes, 1991; Bartnick,
1991; Shvidchenko and Pender, 2000; Shvidchenko et al.,
2001; Mueller et al., 2005; Lenzi et al., 2006; Lamb et al.,
2008; Mao et al., 2008]. The dimensionless critical stress
is often higher in steep streams than in lower-gradient
channels because roughness elements bear a significant
fraction of the total stress [e.g., Buffington and Montgom-
ery, 1997] and/or low relative flow depths reduce the near-
bed turbulence intensities [e.g., Lamb et al., 2008]. How-
ever, the critical Shields stress is often calculated using
reach-averaged flow conditions and not the local forces and
turbulence parameters that cause transport. An actual
increase in the critical Shields stress in steep channels
would occur if the fundamental local forces that initiate
motion have changed. Our results imply that corrections for
the effects of immobile grains may partially reduce the val-
ues of ��rsgo in steep streams to those in channels with rela-
tively low roughness. However, the parameters that control
the actual critical Shields stress (e.g., friction angles, pro-
trusion, or grain interlocking) may also be different
between steep and lower-gradient channels.

Table 4. Prediction Errors for Sediment Flux Calculations in the Rio Cordona

P90 P90 (E) P90 (RC) P90m P90m (E) P90m (RC)

RMSE (m3) 1.5 � 105/8.3 � 104 1.8 � 104/1.0 � 104 1.2 � 104/7.2 � 103 358/405 377/361 359/367
Within an order of magnitude (%) 0/0 17/17 17/17 67/67 67/83 83/83
Greater than (%) 100/100 100/100 100/100 67/83 17/67 67/67
Greater than an order of magnitude (%) 100/100 83/83 83/83 17/33 0/0 0/17
Less than an order of magnitude (%) 0/0 0/0 0/0 17/0 33/17 17/0
Within a factor of 2 (%) 0/0 0/0 0/0 17/17 67/67 17/17

a‘‘Within an order of magnitude’’ denotes the percent of the predicted sediment fluxes that were within an order of magnitude of the measured values.
‘‘Greater than’’ denotes the percent of the predictions that were greater than the measured values. P90, P90 (RC) and P90 (E) are the original Parker equa-
tion with the original, Rio Cordon and Erlenbach (for the total sediment) hiding functions, respectively. P90m, P90m (RC) and P90m (E) are the modified
Parker equation with the original, Rio Cordon and Erlenbach (for the mobile sediment) hiding functions, respectively. Two values are shown for each
equation, separated by a backslash; the first and second values are calculations using a high or low protrusion, respectively.
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[48] Use of hiding functions, calibrated to the entire bed
of steep streams (total-bed Erlenbach and Rio Cordon) in
the original Parker equation did not significantly improve
sediment flux calculations in the Erlenbach and Rio Cordon
(Figures 5 and 6; Tables 3 and 4). These hiding functions
use dimensionless reference shear stresses within the range
of values reported for steep streams (Table 2). We also
tested if simply changing ��rsgo in the original Parker equa-
tion could improve sediment flux predictions without the

use of stress partitioning. In the Rio Cordon, to obtain
comparable RMSE in predicted sediment volumes to those
from the modified Parker equation, ��rsgo must be equal to
�0.4. Use of this ��rsgo still caused the original Parker equa-
tion to systematically over-estimate sediment flux for 67%
of the data points. Furthermore, 0.4 is generally larger than
the reported empirical and theoretical range of ��rsgo for
steep channels (see Lamb et al. [2009] for a review). In the
Erlenbach, use of this value for ��rsgo in the original Parker

Figure 7. Measured and predicted grain size-distributions in the Rio Cordon that were transported on
(a) 5 October 1992, (b) 2 October 1993, (c) 3 July 1989, (d) 7 October 1998, and (e) 14 September 1994.
The values below each date represent the total measured transported sediment volume for each event. RI
is the recurrence interval [from Lenzi et al., 2004]. See Figure 6 for an explanation of the abbreviations
for each sediment transport equation.
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equation caused the measured sediment volumes to be
under-predicted by many orders of magnitude for all data
points. Thus, simply increasing the value of ��rsgo in steep
channels may not result in critical shear stress values that
are transferable between streams or better predictions of
sediment flux.

5.3. Prediction and Measurement Uncertainties

[49] Although our modifications significantly improved
bed load predictions, the predicted fluxes were only to
within a factor of 2 of the measured fluxes for 27% (Table
3) and 67% (Table 4) of the data points in the Erlenbach
and Rio Cordon, respectively. These predictions are still
significant improvements over those from the original
Parker equation, which were only within a factor of 2 for
0%–7% of the data points (see Tables 3 and 4). The persist-
ence of errors in our modified equations suggests that future
work is needed to better understand and improve predic-
tions of transport processes in steep channels. The discrep-
ancies between the measured and predicted sediment
volumes in the Erlenbach could be caused by assumptions
in the stress-partitioning and modified Parker equations.
For all events, we assumed the grain-size distribution of the
relatively mobile sediment and the immobile-grain spacing,
size, and protrusion were constant. During this time period,
no event was large enough to move the immobile-grain
steps and change their downstream spacing. Furthermore,
the yearly sediment yield remained relatively constant and
therefore the sediment availability and the parameters that
depend on it (grain size, area occupied by mobile sediment,
and step protrusion) may not have significantly changed.
However, the sediment supply for any given event, which
controls the grain size of the relatively mobile sediment and
the immobile-grain protrusion (pu) and downstream length
(�w), could have varied. A theory is still needed to predict
the variation of pu and the mobile grain sizes with sediment
supply and shear stress. Without such a theory, we cannot
determine how these parameters will change between and
within sediment transport events.

[50] We also assumed the bed characteristics did not
change in the Rio Cordon because no data were available
on the event-scale variations of these parameters. Some of
our tested events in the Rio Cordon transported large bould-
ers, and likely altered the sediment availability and step
characteristics. Thus, some of the errors in the Rio Cordon
are very likely caused by the use of static bed conditions.
Our assumed values for the downstream step length, mobile
grain-size distributions, and step protrusion may have also
introduced prediction errors.

[51] Prediction errors may have also occurred from
assuming constant drag coefficients for all streams (Rio
Cordon, Erlenbach, and Fox Creek); it is likely that the
drag coefficient for the immobile steps may vary with the
step spacing. In addition, the modified Parker equation
does not account for the spatial variability in grain size and
critical and applied shear stresses. All of these parameters
vary significantly in steep streams [Yager, 2006], and
neglecting this variation can cause large errors in the pre-
dicted sediment flux [Ferguson, 2003]. In particular,
patches are composed of relatively narrow grain-size distri-
butions that move under local flow conditions that are dis-
tinct from reach-averaged values [e.g., Dietrich et al.,
2005; Nelson et al., 2009; Yager, 2006]. Patch sorting and
channel location (high- versus low-stress environments)
influence the relatively mobility of a given grain size
[Yager, 2006]. Thus, errors in our sediment volume and
grain size predictions may be partially caused by using the
reach-averaged Parker equation in a patchy stream. We did
not know the local stress conditions over each patch and
therefore could not predict the sediment flux on individual
patch classes. We have developed a set of flow and trans-
port equations that only require the flow discharge and
reach-averaged bed properties. If more detailed flow infor-
mation is known, equations such as those developed by
Kean and Smith [2006a, 2006b] and Kean et al. [2009]
could be modified to predict the spatial variability in shear
stress for rough streams.

[52] Finally, the measured sediment volumes in the
Erlenbach and Rio Cordon have associated uncertainties
that may cause some of the differences between the pre-
dicted and measured values. For example, the bed load sen-
sors in the Erlenbach only measure grains coarser than
1 cm. The proportion of the sediment volume in the reten-
tion basin represented by this size is assumed to be constant
in the bed load sensor calibration. It is unlikely that this
proportion actually remains constant with event magnitude
and therefore the bed load sensors may under- or overesti-
mate the bed load flux of grains coarser than 1 cm, depend-
ing on the flow discharge. Although this could impact our
prediction errors, we do not see any systematic differences
between the measured and predicted fluxes with event mag-
nitude. The uncertainties in such measurements are dis-
cussed in detail in the original data sources for these
measurements [e.g., Rickenmann and McArdell, 2007;
Lenzi et al., 1999].

5.4. Application to Other Steep Streams

[53] The Rio Cordon, Erlenbach, and Fox Creek repre-
sent a wide range of bed coverage by mobile sediment, step
spacing and protrusion, channel slope, and immobile and
mobile grain sizes (Table 1). Thus, our combined stress-
partitioning and sediment transport equations have the
potential to improve predictions of flow, velocity, shear
stress, and sediment flux in other steep channels without
individual stream calibration. A slightly different set of
these equations that were developed for cascade channels,
also predicted sediment flux and flow hydraulics better than
all of the other tested resistance and sediment transport
equations, when compared to flume data. These experi-
ments used a wide range in the upstream sediment supply,
boulder spacing, and protrusion [Yager et al., 2007].

Table 5. RMSE (mm) of the Predicted Transported Grain Sizes
in the Rio Cordona

Equation RMSE D84 RMSE D50 RMSE D16

P90 427 124 34
P90 (E) 21 12 7
P90 (RC) 32 14 7
P90m 163 82 29
P90m (E) 26 12 6
P90m (E. low p) 37 21 10
P90m (RC) 142 67 23

aSee Table 4 for an explanation of abbreviations. ‘‘Low p’’ denotes low
protrusion, all other values use a high protrusion (see Table 1).
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[54] The tested events in the Erlenbach had recurrence
intervals that ranged from <0.1 to �1.5 and in the Rio Cor-
don from 2 to 52.6 [Lenzi et al., 2004]. Our modified equa-
tions are capable of predicting sediment fluxes for small,
frequent, and large channel-changing events. We do not
recommend, however, using our equations in events that
move the steps because the modified Parker equation is
based on the assumption that steps are immobile. These
large boulders move during relatively infrequent, large
magnitude events [e.g., Lenzi, 2001; Turowski et al., 2009].
Relatively little is known about the mechanics of step for-
mation and disintegration, and such research is beyond the
scope of our study. We recommend that future work focus
on determination of the forces and bed and flow conditions
that are responsible for step disintegration. Until the
mechanics of boulder movement are better understood, we
recommend determining the appropriate sediment transport
equation based on the recurrence interval of a given flow or
empirical/theoretical estimates of boulder mobility [e.g.,
Lamb et al., 2008, Recking, 2009; Turowski et al., 2009].
Sediment transport equations developed for lower-gradient
channels, which do not partition the total shear stress and
allow for boulder movement, work relatively well during
large events in which all grain sizes are mobile [e.g., Bath-
urst et al., 1987; Rickenmann, 1997; D’Agostino and
Lenzi, 1999]. Thus, the modified Parker equation would be
applicable up to a certain flow condition, above which the
original Parker or similar equation should be used. This
exact threshold between applicable bed load equations will
depend on the relative mobility of the boulder steps in a
given channel. The modified and original Parker equations
will predict the same bed load flux when the mobile and
total grain size distributions are equivalent and the step pro-
trusion is zero.

[55] The set of equations outlined here are only for step-
pool channels and are not directly applicable to cascade
streams. However, the stress-partitioning equations devel-
oped by Yager et al. [2007] are for cascade morphologies
and when combined with the modified Parker equation
could be used to predict sediment flux in such streams. The
modified Parker equation presented here was derived for
steep channels with boulder steps. It could be altered to
account for sediment transport over wood-dominated steps
by substituting the boulder parameters (D, pu, �x, �y, �w)
with those relevant for woody debris (e.g., spacing between
wood steps, upstream protrusion of wood, wood diameter).

[56] The majority of published bed load transport equa-
tions have limited testing in only one or a few field loca-
tions, which preclude their wide applicability. Therefore,
we recommend future collection of bed load transport data
to test both the modified Parker and other bed load trans-
port equations for a wider variety of upstream sediment
supplies, step spacing, and protrusion values. A recent
study also demonstrates that our stress-partitioning approach
predicts bed load flux and flow conditions relatively accu-
rately in a range of steep streams, especially those with
high-boulder concentrations [Nitsche et al., 2011]. Further-
more, although our Erlenbach hiding function, when com-
bined with the modified Parker equation, predicted sediment
flux relatively accurately in two streams, it also requires fur-
ther testing in other steep channels to determine its general
applicability. Given the wide range in published hiding

functions for lower-gradient channels, we expect some
variability in the hiding function between steep channels.
General application of the modified Parker equation will be
improved if CI and Cm are calibrated using reach-averaged
flow measurements in a range of other streams. Detailed
laboratory experiments of the flow and pressure fields
around grains [e.g., Kalinske, 1943; Nelson et al., 1995;
Papanicolaou et al., 2001; Kean and Smith, 2006a;
Schmeeckle et al., 2007] could also provide data to calibrate
these drag coefficients. The field approach continues our
treatment of CI and Cm as bulk roughness coefficients,
whereas detailed laboratory measurements determine the
actual drag coefficients.

[57] The modified Parker equation requires relatively
few additional measurements (pu, �w, �x) to those used in
the original Parker equation (S, q, grain-size distribution).
Our detailed topographic measurements of the immobile-
step protrusion, spacing, and downstream length are not
required; these would only require tape measurements. A
number of pebble counts are needed to characterize the
grain sizes of the mobile and immobile sediment. For more
detailed flow calculations, the step protrusion, cross-stream
packing, and down-stream spacing may be estimated for
regular and irregular step arrangements following the meth-
odology of Kean and Smith [2006a, 2006b]. In Appendix 4,
we have outlined the measurements and calculations neces-
sary to apply the modified Parker equation to other steep
streams.

[58] Bed load transport equations are often applied to
determine the sediment flux and channel conditions (e.g.,
width, slope, grain size) throughout watersheds. Such cal-
culations are used for different river restoration scenarios
and to evaluate the impact of land-use practices on down-
stream river conditions and aquatic habitat. Predictions
of sediment routing through watersheds currently use sedi-
ment transport equations developed for lower-gradient
channels, which significantly over-predict the sediment
flux out of steep steams. Steep streams are the majority of
the total channel length in mountainous drainage networks
and are the direct link between hillslope processes and
lower-gradient channels. Thus, over-predicted sediment
fluxes may influence the predicted channel slopes (may
increase to transport the high sediment load) and grain sizes
(may decrease with high supply) throughout watersheds.
With additional field verification, the modified Parker or
similar bed load equations could improve basin-scale slope
and grain size predictions. Such basin-scale sediment flux
predictions require less-detailed bed measurements than we
have outlined here. Field measurements in a number of
steep streams could determine possible ranges in the grain-
size distribution of the relatively mobile sediment and the
immobile-step protrusion and spacing. In theory, an equa-
tion that predicts these parameters from the upstream sedi-
ment supply (obtained from hillslope erosion models)
could be also combined with the modified Parker equation.

6. Conclusions
[59] We previously developed a combined set of modi-

fied sediment transport and stress-partitioning equations for
cascade channels but only tested these equations using
flume experiments with a single mobile grain size. Here,
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we further modify these equations to include the effects of
immobile grain steps and selective transport (using the
Parker [1990] bed load equations) of the relatively mobile
sediment. This set of equations significantly improved sedi-
ment flux and flow predictions in a number of steep chan-
nels. Unlike the other transport equations that we tested,
this modified Parker [1990] equation mostly predicted the
sediment volumes to within an order of magnitude of the
measured values and had the lowest RMSE. The modified
Parker [1990] equation obtained the most accurate sedi-
ment flux and transported grain size predictions when it
was combined with a hiding function that calculates highly
selective transport of the relatively mobile sediment. Use
of a large critical Shields stress, such as those reported in
steep streams, does not systematically improve bed load
transport calculations in all tested streams. The modified
Parker equation performs well because it accounts for the
stress borne by the relatively immobile grains, and the lim-
ited availability and size-selective transport of the more
mobile sediment.

Appendix A

Appendix A1: Calibration of Drag Coefficients
[60] CI may vary with the immobile-grain spacing (�x

and �y) and relative submergence (ha/pu) [e.g., Flammer
et al., 1970; Nepf, 1999; Wallerstein et al., 2002], whereas
Cm may only vary with the relative submergence of the mo-
bile sediment (ha/Dm84). In a given reach, �x and �y will
remain constant if the immobile steps are stable and the
WSL has not documented any changes in step locations in
the Erlenbach during our prediction time frame. Thus, ha/pu

and ha/Dm84 will primarily depend on the mobile patch ele-
vations, which vary with flow and sediment supply [Yager
et al., 2007].

[61] We first attempted, using a variety of solver techni-
ques (e.g., least squares, particle swarm algorithms) and
our flow data in the Erlenbach, to solve our stress-parti-
tioning equations for both coefficients (CI and Cm) and
allow these coefficients to vary with flow depth. However,
none of the solver algorithms allowed us to determine
unique and physically meaningful values of CI and Cm for
a given flow depth. We therefore calculated Cm from data
collected by Marcus et al. [1992] in an un-named steep
stream with similar grain sizes to the Erlenbach’s mobile
sediment. This stream contained few boulders (see photos
in the work of Marcus et al. [1992]) and we assumed its
drag coefficient of the entire bed (CT) was a maximum
estimate for Cm in the Erlenbach. Thus, we assume Cm

may be relatively constant between steep channels, which
is reasonable given that we only expect Cm to vary with
the relative submergence of the mobile sediment. Our cal-
culation of CT therefore only included data points with ha/
D84 values equal to those observed in the Erlenbach dur-
ing sediment-transporting flows. Future work should focus
on measurement of Cm in other steep streams to test this
assumption.

[62] We set equation (2) equal to equation (3), replaced
Cm with CT, and solved for CT using the measured values
of U and hydraulic radius from Marcus et al. [1992].
We used the hydraulic radius (R) instead of ha in these

equations because ha was not reported. We set Cm equal to
the average value of CT (0.44 6 0.09), although CT dis-
played a power law relationship with ha/D84 (R2 of 0.3, Fig-
ure A1a). The statistical significance of this fit did not
justify using a variable value for Cm. We also expect that
CI is more likely to vary than Cm because drag coefficients
are only highly variable at low relative submergences [e.g.,
Bathurst, 1978; Bathurst et al., 1981; Thorne and Zeven-
bergen, 1985] and the mobile and immobile grains were
fully and rarely submerged, respectively, during our meas-
ured flows.

[63] The variation in CI with ha/pu was calculated using
equation (1), solved for CI, Cm of 0.44, and the measured
values of D, �x, �w, zmu, ha, U, W, and q in the Erlenbach
(Table 1). Although CI declined with increasing ha/pu, as
expected, it did not vary smoothly because w and ha fluctu-
ated irregularly with discharge in some cross sections
(Figure A1b). We can substitute for CI in equation (1) using
a power law fit between CI and ha/pu:

CI¼ 157
ha

pu

�1:6

: (A1)

[64] We compare the drag coefficients for the Erlenbach
with those measured in streams with gradients greater than
3% [Thompson and Campbell, 1979; Jarrett, 1984; Bath-
urst, 1985; Marcus et al., 1992; Lepp et al., 1993; Mac-
Farlane and Wohl, 2003]. We lack the necessary data to
determine CI in these channels and instead calculate CT

using reported data (ha, U, and grain size) in each stream
and the method outlined above (for Cm calibration). For a
given ha/D84, the values of CT in the Erlenbach are similar
to those from all other steep streams (Figure A1c). CT can
be several orders of magnitude lower than CI because of
the area scaling in our equations. CT ¼ CmAm þ (CIAIF)/
AT, where AIF/AT and CmAm were �0.02 and 0.3, respec-
tively. Thus, the values of CI appear large because they are
approximately equal to CT multiplied by 50. CI is higher in
the Erlenbach than those values measured for isolated
spheres in flume experiments because in the Erlenbach, it
incorporates plunging flow over steps, local accelerations
around boulders, and flow in jets and pools. All of these
flow processes dissipate considerably greater energy than
simple flow around spheres. Thus, we calculate CI as a bulk
roughness coefficient as opposed to more commonly used
equations for drag coefficients that incorporate pressure
and velocity variations around individual objects.

[65] We tested our assumption of using a constant value
of Cm by fitting an equation to the measured values of Cm

and ha/D84 from Marcus et al. [1992]. We then use this
equation, combined with our stress partitioning equations,
to recalculate CI as a function of ha/pu and Cm. Use of the
variable Cm caused the predicted stress borne by the mobile
sediment to remain constant at moderate to high discharges
in the Erlenbach (Figure A1d). This relationship was not
reasonable because when used in a sediment transport
equation, it would predict nearly constant sediment flux for
a wide range of flow conditions. The stress borne by the
mobile sediment should increase, like the total shear stress,
with greater flow discharges. This occurs when we use a
constant value for Cm to calculate �m (Figure A1d).

W01541 YAGER ET AL.: PREDICTION OF SEDIMENT TRANSPORT IN STEP-POOL CHANNELS W01541

14 of 20



Appendix A2: Hiding Function Calculation for the
Erlenbach

[66] We calibrated hiding functions for the Erlenbach
using tracer particle (consisted of painted rocks and repeat
photographs of a given location) movements during five
low- to moderate- (71% of bankfull) flow events (see Yager
[2006] for details on tracer measurements). The number of
placed and transported tracer particles ranged from 290 and
23, respectively, for the smallest event to 750 and 254,
respectively, for the largest event. The maximum grain size
moved during an event can be used to calculate the critical
shear stress and hiding function [e.g., Andrews, 1983; Carl-
ing, 1983; Mao et al., 2008]. The maximum mobile grain
size did not regularly vary with shear stress in Erlenbach
and was very sensitive to the location of tracer placement
[see Yager, 2006]. To avoid these problems and to use a
more statistically meaningful measurement of grain mobil-
ity, we assumed the mobile D84 of the tracer particles
would represent the largest size moved during each event.
We then divided this grain size by the D50 of the relatively

mobile sediment or the D50 of the entire bed to obtain the
grain size ratio (Di/D50 or Di/D50m) for each event. Hiding
functions were fit between these ratios and the dimension-
less peak total shear stress (fit with Di/D50) or dimension-
less peak stress on the mobile sediment (fit with Di/D50m)
during each event that moved tracers (Figure A2).

Appendix A3: Stress-Partitioning and the Original
Parker Equations

[67] The stress-partitioning equations are discussed in
detail by Yager et al. [2007] and only a brief outline is
given here. The total boundary shear stress (� t) is parti-
tioned between the stress on the immobile grains (� I) and
the mobile sediment (�m),

�t ¼
�IAIP þ �mAm

At
; (A2)

where At is the total bed area, and Am and AIP are the total
bed-parallel areas of the mobile and immobile grains,

Figure A1. The drag coefficients for the (a) mobile sediment, (b) immobile grains, and (c) total bed as
functions of relative submergence. The data in Figure A1a are from Marcus et al. [1992]. In Figure A1b,
the dashed gray line shows the calculated values of CI and the solid black line is the best-fit equation to
the data in the Erlenbach. In Figure A1c, the solid line is for the Erlenbach and gray crosses are for other
steep streams [Thompson and Campbell, 1979; Jarrett, 1984; Bathurst, 1985; Marcus et al., 1992; Lepp
et al., 1993; MacFarlane and Wohl, 2003]. In Figure A1d, the calculated shear stress in the Erlenbach is
shown as a function of the unit discharge. Shown are the total shear stress (solid black line), and the stress
borne by the mobile sediment for a constant (solid gray line), or variable (dashed gray line) value of Cm.
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respectively. � t and �m are given by equations (2) and (3),
respectively, and � I is calculated using

�I ¼
�AIFCIU

2

2AIP
; (A3)

where CI and AIF are the drag coefficient and bed-perpen-
dicular area of the immobile grains. AIF is given by

AIF¼ haþzmu�
D

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhaþzmuÞD�ðhaþzmuÞ2

q�

þD2

4
sin�1 2

haþzmu

D

� �
�1

� �
� zmu�

D

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zmuD�z2

mu

q �
w

D

�Dw

4
sin�1 2zmu

D
�1

� �
whenhþzm�D

(A4a)

AIF¼
�D2

8
� zmu�

D

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zmuD�z2

mu

q
�D2

4
sin�1 2zmu

D
�1

� �� �
w

D
;

when hþzm�D;

(A4b)

where D is the median grain size of the immobile grains, w is
the channel width, ha is the average flow depth, and zmu is
the bed-perpendicular height of the mobile sediment (see sec-
tion 2.1 for details). We combine equations (2), (3), (A16),
and (A2)–(A4) to obtain the solution given in equation (1).

[68] The dimensionless critical shear stress is given by

��c ¼
� c

ð�s � �ÞgD50

; (A5)

where is ��c is the critical shear stress and D50 is the median
grain size.

[69] In our modified Parker equations below, we use the
constants and notation given by Parker [1990] for all equa-
tions except (A9), in which we use notation from Parker
[2008]. The bed is divided into N grain size classes with
characteristic diameters (Di) where i ranges from 1 to N.
The geometric mean size of the relatively mobile sediment
(Dsgm) is given by

ln Dsgm ¼
XN

i¼1

Fmi ln Di; (A6)

where Fmi is the volume fraction of the relatively mobile
sediment in the ith grain-size class. The arithmetic standard
deviation (in � units) of the relatively mobile sediment
(��m) is

�2
�m ¼

XN

i¼1

ln ½Di=Dsgm�
ln 2

� �2

Fmi: (A7)

The dimensionless shear stress borne by the mobile sedi-
ment (��sgm) is given by

��sgm ¼
�m

�RsgDsgm

; (A8)

where Rs is the dimensionless submerged specific gravity
of sediment and �s is the sediment density. The hiding
function for the mobile sediment (�mi) is

�mi ¼ !m�sgom
Di

Dsgm

� ��0:0951

; (A9)

where

�sgom ¼
��sgm

��rsgo

; (A10)

and ��rsgo is a dimensionless reference stress (0.0386, in the
original Parker equation). The empirical function !m is

!m ¼ 1þ ��m

��Oð�sgomÞ
½!Oð�sgomÞ � 1�; (A11)

where ��Oð�sgomÞ and !Oð�sgomÞ are graphical functions
illustrated by Parker [1990]. The dimensionless bed load
transport rate (W�

msi) of each ith size class in the mobile
sediment is

W�
msi ¼ 0:00218 Gð�miÞ (A12)

and the empirical function G(�mi) is

Gð�miÞ¼
5474 1�0:853

�mi

� �4:5

for �mi>1:59

exp½14:2ð�mi�1Þ�9:28ð�mi�1Þ2� for 1��mi�1:59

�mi for �mi<1:

8>>>><
>>>>:

(A13)

Figure A2. Dimensionless critical shear stress as a func-
tion of the relative grain size (Di/D50) in the Erlenbach.
Hiding function fits to tracer particle movements are shown
for both the mobile (squares) and total (circles) bed sedi-
ment. The dimensionless critical shear stresses were calcu-
lated using the stress borne by the mobile sediment
(squares) and the total shear stress (circles).
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Equation (A13) is based on empirical fits to bed load trans-
port data from Oak Creek [Parker, 1990]. The volumetric
transport rate per unit width (qmi) for each ith size class in
the relatively mobile sediment is

qmi¼

ffiffiffiffi
�m

�

q 3
FmiW

�
msi

Rsg
:

(A14)

The total transport rate per unit width (qTm) of all grain
sizes in the mobile sediment is

qTm¼
XN

i¼1

qbmi

 !
Am

At
; (A15)

where the transport rate is scaled by the proportion of the
bed covered by relatively mobile sediment (Am/At). The
total unit bed area (At) is the product of the channel width
and �x (Figure 2). The area occupied by relatively mobile
sediment (Am) is

Am¼w�x�AIP; (A16)

which is the difference between At and the total bed-paral-
lel area occupied by immobile grains (AIP). The later is cal-
culated as the bed-parallel area of one immobile grain
(�wD) multiplied by the number of immobile grains (w/D)
within At.

[70] The fraction of bed load in the ith grain-size class
(pmi) is

pmi ¼
qmi

qTmAt

Am

: (A17)

The original Parker [1990] sediment transport equations
are shown below. The geometric-mean size (Dsg) of the
surface sediment is

ln Dsg ¼
XN

i¼1

Fi ln Di; (A18)

where Fi is the volume fraction of the sediment in the ith
grain-size class. The arithmetic standard deviation of the
surface grain-size distribution (��) is

�2
� ¼

XN

i¼1

ln ðDi=DsgÞ
ln2

� �2

Fi (A19)

and the dimensionless shear stress is

��sg ¼
� t

�RsgDsg

: (A20)

The hiding function for the entire bed (�i) is

�i ¼ !�sgo

Di

Dsg

� ��0:0951

; (A21)

where

�sgo ¼
��sg

��ssrg
(A22)

and ��ssrg is the dimensionless reference stress (0.0386). The
empirical function ! is

! ¼ 1þ ��
�Oð�sgoÞ

½!Oð�sgoÞ � 1�; (A23)

where �Oð�sgoÞ and !Oð�sgoÞ are graphical functions illus-
trated by Parker [1990]. The dimensionless bed load trans-
port rate (W�

si) for each ith size class is

W�
si ¼ 0:00218 Gð�iÞ; (A24)

where the empirical function G(�i) is

Gð�iÞ ¼
5474 1� 0:853

�i

� �4:5

for�i > 1:59

exp ½14:2ð�i � 1Þ � 9:28ð�i � 1Þ2� for 1 � �i � 1:59

�i for�i < 1:

8>>>><
>>>>:

(A25)

The volumetric transport rate per unit width (qi) for each
grain size is

qi ¼
w�si

� t=�

� �1:5
Fi

Rsg
(A26)

and the total volumetric transport rate per unit width (qT) is

qT ¼
XN

i¼1

qi: (A27)

The fraction of bed load in the ith grain-size class (pi) is

pi ¼
qi

qT

: (A28)

Appendix A4: Measurements and Calculations
Needed to Apply Modified Parker Equation

[71] Bed load transport can be determined in any steep
stream using a series of calculations, eight reach-averaged
variables (w, S, q, D, pu, grain size distribution of mobile
sediment, �x and �w), and two drag coefficients (Cm and
CI). A measured flow discharge (q) or the flow discharge
hydrograph are needed to calculate sediment flux. As dis-
cussed in section 5.4, the channel width (w) and slope (S)
can be obtained from simple cross-sectional surveys and
longitudinal profiles of a stream. The channel bed should
then be mapped into mobile and immobile patches, which
are denoted using the step classification criteria outlined in
section 3.1.2. The downstream distance between each step
(�x) and downstream step length (�w) can be determined
using a measurement tape (see Figure 2 for the definition of
these parameters). The upstream step protrusion could be
measured using detailed surveying equipment (e.g., total
station, DGPS, ground-based LiDAR) or a ruler. This pa-
rameter should be measured multiple times on every step to
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ensure that the inherent variability in protrusion is captured.
All boulders and/or cobbles within the immobile steps
should be measured and used to obtain the median grain
size of the immobile sediment. Finally, multiple pebble
counts should be conducted on the relatively mobile sedi-
ment and these counts should be aerially weighted to obtain
a composite grain size distribution. The reach-averaged
height of the relatively mobile sediment (zmu) is D-pu. The
reached-averaged values for w, S, D, zmu, �x, and �w and a
given flow discharge (or flow hydrograph) are then used to
iterate a solution for the reach-averaged flow depth (ha)
using equations (1) and (A4). In these calculations either
our calibrated (see section 3.1.3) or locally calibrated (to
the stream of interest) values for the drag coefficients (Cm

and CI) need to be used. The flow velocity is calculated as
q/ha and is used to determine the stress borne by mobile
sediment from equation (3). Then, one should step through
equations (A6)–(A8) and determine which hiding function
is appropriate for a given stream. The Erlenbach and origi-
nal Parker hiding functions are given by equations (5) and
(A9), respectively. Note that the dimensionless reference
stress is different between these equations. Once the hiding
function has been chosen, one can step through equations
(A10)–(A17) to determine the sediment flux for a given dis-
charge. A MATLAB script, which will only require the input
parameters of w, S, flow hydrograph, D, pu, grain size distri-
bution of mobile sediment, �x, and �w, will be made avail-
able at https://sites.google.com/site/emyager/home. This
script uses our calibrated drag coefficients and gives the user
an option to choose from a range of hiding functions.

Definition of Symbols

AIF bed-perpendicular area of immobile grains
AIP bed-parallel area occupied of immobile grains
Am bed-parallel area of mobile sediment
At total bed area

Cm drag coefficient for the mobile sediment
CI drag coefficient for the immobile grains
CT drag coefficient for the entire bed
D mean immobile-grain diameter

D50 median grain size of entire bed
D50m median grain size of mobile sediment
D84m 84th percentile of the grain-size distribution of the

relatively mobile sediment
D84 84th percentile of the grain-size distribution of the

entire bed
Di characteristic grain size in the ith grain-size class

Dsg geometric mean size of the entire bed
Dsgm geometric mean size of the relatively mobile

sediment
g acceleration due to gravity

ha average flow depth
Fmi proportion of the relatively mobile sediment in the

ith grain-size class
Fi proportion of the entire bed sediment that is in the

ith grain-size class
pi fraction of the predicted bed load that is in the ith

grain-size class (original Parker)
pmi fraction of the predicted bed load that is in the ith

grain-size class (modified Parker)

pu portion of immobile grains that protrude above the
mobile bed surface that is upstream of the steps

q discharge per unit width
qi volumetric sediment transport rate per unit width

of the mobile sediment in the ith grain-size class
(original Parker)

qmi volumetric sediment transport rate per unit width
of the mobile sediment in the ith grain-size class
(modified Parker)

qT total volumetric sediment transport rate per unit
width of the mobile sediment (original Parker)

qTm total volumetric sediment transport rate per unit
width of the mobile sediment (modified Parker)

R hydraulic radius
Rs dimensionless submerged specific gravity of

sediment
S reach-average water surface slope
U reach-average velocity
w channel width

w/D number of immobile elements on the bed
W�

si dimensionless sediment transport rate of the mobile
sediment in the ith grain-size class (original
Parker)

W�
msi dimensionless sediment transport rate of the mobile

sediment in the ith grain-size class (modified
Parker)

zmu average bed-perpendicular height of the (upstream)
mobile sediment above the base of the immobile
grains

�x downstream immobile-grain spacing
�y cross-stream immobile-grain spacing
�w downstream length of immobile-grain steps
�/D dimensionless immobile-grain spacing
� density of water
�s density of sediment
�� arithmetic standard deviation of the entire bed
��m arithmetic standard deviation of the relatively mo-

bile sediment
� hiding function for the entire bed

�mi hiding function for the mobile sediment
� I stress borne by immobile grains
�m stress borne by mobile sediment

��rsgo reference dimensionless shear stress
��sg dimensionless stress borne by the entire bed (origi-

nal Parker)
��sgm dimensionless stress borne by the mobile sediment

(modified Parker)
� t total boundary shear stress

[72] Acknowledgments. Funding for this research was provided by a
CA Water Resources grant to W. Dietrich, an AGU Horton Graduate
Award to E. Yager, and the Swiss Federal Research Institute WSL. Invalu-
able field assistance was provided by M. Swartz, A. Densmore, D. Frank,
J. Sanders, S. Araki, J. Stock, and B. Fritschi. Thoughtful reviews by M.
Stacey, A. Zimmermann, J. Turowski, L. Mao, James Brasington, and two
anonymous reviewers improved earlier versions of this manuscript.

References
Abrahams, A. D., and J. F. Atkinson (1993), Relation between grain veloc-

ity and sediment concentration in overland flow, Water Resour. Res., 29,
3021–3028.

W01541 YAGER ET AL.: PREDICTION OF SEDIMENT TRANSPORT IN STEP-POOL CHANNELS W01541

18 of 20



Aguirre-Pe, J. (1975), Incipient erosion in high gradient open channel flow
with artificial roughness elements, Proc. 16th Congr. Int. Assoc.
Hydraul. Res., San Paulo, Brazil, 2, 137–180.

Aguirre-Pe, J., and R. Fuentes (1991), Movement of big particles in steep,
macro-rough streams, Proc. 24th Congr. Int. Assoc. Hydraul. Res., Ma-
drid, Spain, A, 149–158.

Andrews, E. D. (1983), Entrainment of gravel from naturally sorted riv-
erbed material, Geol. Soc. Amer. Bull., 94, 1225–1231.

Ashida, K., and M. Bayazit (1973), Initiation of motion and roughness of
flows in steep channels, Intl. Assoc. Hydraul. Res. Proc. 15th Congress,
Istanbul, Turkey, 1, 475–484.

Ashworth, P. J., and R. I. Ferguson (1989), Size-selective entrainment
of bed load in gravel bed streams, Water Resour. Res., 25, 627–
634.

Ashworth, P. J., R. I. Ferguson, P. E. Ashmore, C. Paola, D. M. Powell, and
K. L. Prestegaard (1992), Measurements in a braided river chute and lobe
2: Sorting of bedload during entrainment, transport, and deposition,
Water Resour. Res., 28, 1887–1896.

Bartnick, W. (1991), Determination of the critical conditions of incipient
motion of bed load in mountain rivers, in Fluvial Hydraulics in Mountain
Regions, edited by A. Armanini and G. Di Silvio, pp. 83–88, Springer-
Verlag, Berlin, Germany.

Bathurst, J. C. (1978), Flow resistance of large-scale roughness, J. Hydraul.
Div., 104, 1587–1603.

Bathurst, J. C. (1985), Flow resistance estimation in mountain rivers, J.
Hydraul. Eng., 111, 625–643.

Bathurst, J. C., R. M. Li, and D. B. Simons (1981), Resistance equation for
large-scale roughness, J. Hydraul. Eng., 107, 1593–1613.

Bathurst, J. C., G. J. L. Leeks, and M. D. Newson (1986), Field measure-
ments for hydraulic and geomorphological studies of sediment transport.
The special problems of mountain streams, paper presented at Sympo-
sium on Measuring Techniques in Hydraulic Research, Delft, Nether-
lands, pp. 137–151.

Bathurst, J. C., W. H. Graf, and H. H. Cao (1987), Bed load discharge equa-
tions for steep mountain rivers, in Sediment Transport in Gravel-Bed Riv-
ers, edited by C. R. Thorne, J. C. Bathurst, and R. D. Hey, pp., 453–477,
John Wiley, N. Y.

Benda, L., and T. Dunne (1997), Stochastic forcing of sediment routing and
storage in channel network, Water Resour. Res., 33, 2865–2880.

Buffington, J. M., and D. R. Montgomery (1997), A systematic analysis of
eight decades of incipient motion studies, with special reference to
gravel-bedded rivers, Water Resour. Res., 33, 1993–2029.

Buffington, J. M., and D. R. Montgomery (1999a), Effects of sediment sup-
ply on surface textures of gravel-bed rivers, Water Resour. Res., 35,
3523–3530.

Buffington, J. M., and D. R. Montgomery (1999b), A procedure for classify-
ing textural facies in gravel-bed rivers, Water Resour. Res., 35, 1903–
1914.

Byrd, T. C., and D. J. Furbish (2000), Magnitude of deviatoric terms in ver-
tically averaged flow equations, Earth Surf. Processes Landforms, 25,
319–328.

Byrd, T. C., D. J. Furbish, and J. Warburton (2000), Estimating depth-
averaged velocities in rough channels, Earth Surf. Processes Landforms,
25, 167–173.

Calkins, D., and T. Dunne (1970), A salt tracing method for measuring
channel velocities in small mountain streams, J. Hydrology, 11, 379–
392.

Carling, P. A. (1983), Threshold of coarse sediment transport in broad and
narrow natural streams, Earth Surf. Processes Landforms, 8, 1–18.

Church, M., and A. Zimmermann (2007), Form and stability of step-pool
channels: Research progress, Water Resour. Res., 43, W03415,
doi:10.1029/2006WR005037.

Curran, J. H., and E. E. Wohl (2003), Large woody debris and flow
resistance in step-pool channels, Cascade Range, Washington, Geomo-
phology, 51, 141–157.

D’Agostino, V., and M. A. Lenzi (1999), Bedload transport in the instru-
mented catchment of the Rio Cordon part II: Analysis of the bedload
rate, Catena, 36, 191–204.

Day, T. J. (1977a), Observed mixing lengths in mountain streams, J. Hy-
drology, 35, 125–136.

Day, T. J. (1977b), Field procedures and evaluation of a slug dilution
gauging method in mountain streams, J. Hydrology (New Zealand), 16,
113–133.

Dietrich, W. E., P. A. Nelson, E. Yager, J. G. Venditti, M. P. Lamb, and
L. Collins (2005), Sediment patches, sediment supply, and channel

morphology, in River Coastal and Estuarine Morphodynamics, edited
by G. Parker and M. H. Garcia, pp. 79–90, Taylor and Francis, Lon-
don, U. K.

Ferguson, R. I. (2003), The missing dimension: Effects of lateral variation
on 1-D calculations of fluvial bedload transport, Geomorphology, 56, 1–
14, doi:10.1016/S0169-555X(03)00042-4.

Ferguson, R. I., J. R. Cudden, T. B. Hoey, and S. P. Rice (2006), River sys-
tem discontinuities due to lateral inputs: generic styles and controls,
Earth Surface Processes Landforms, 31, 1149–1166.

Fernandez Luque, R. F., and R. Van Beek (1976), Erosion and transport of
bedload sediment, J Hydraul. Res., 14, 127–144.

Flammer, G. H., J. P. Tullis, and E. S. Mason (1970), Free surface, velocity
gradient flow past hemisphere, J. Hydraul. Div., HY7, 1485–1502.

Garcia, C., J. B. Laronne, and M. Sala (1999), Variable source areas of bed-
load in a gravel-bed stream, J. Sedimentary Res., 6, 27–31.

Gill, M. A. (1979), Hydraulics of rectangular vertical drop structures, J.
Hydraul. Res., 17, 289–302.

Gomi, T., and R. C. Sidle (2003), Bed load transport in managed steep-
gradient headwater streams of southeastern Alaska, Water Resour. Res.,
12(12), 1336, doi:10.1029/2003WR002440.

Graf, W. H., and L. Suszka (1987), Sediment transport in steep channels, J.
Hydrosci. Hydraul. Eng., 5(1), 11–26.

Hegg, C., B. W. McArdell, and A. Badoux (2006), One hundred years of
mountain hydrology in Switzerland by the WSL, Hydrol. Processes, 20,
371–376, doi:10.1002/hyp.6055.

Hoffman, G. J. C. M. (1998), Jet scour in equilibrium phase, J. Hydraul.
Eng., 124, 430–437.

Howard, A. D., W. E. Dietrich, and M. A. Seidl (1994), Modeling fluvial
erosion on regional to continental scales, J. Geophys. Res., 99, 13,971–
13,986.

James, C. S., A. G. Main, and J. Moon (2001), Enhanced energy dissipation
in stepped chutes, Water Mar. Eng., 4, 277–280.

Jarrett, R. D. (1984), Hydraulics of high-gradient streams, J. Hydraul. Eng.,
110, 1519–1539.

Kalinske, A. (1943), The role of turbulence in river hydraulics, Bull. Univ.
Iowa Studies Eng. 27, 266–279.

Kean, J. W., and J. D. Smith (2006a), Form drag in rivers due to small-scale
natural topographic features: 1. Regular sequences, J. Geophys. Res.,
111, F04009, doi:10.1029/2006JF000467.

Kean, J. W., and J. D. Smith (2006b), Form drag in rivers due to small-scale
natural topographic features: 2. Irregular sequences, J. Geophys. Res.,
111, F04010, doi:10.1029/2006JF000490.

Kean, J. W., R. A. Kuhnle, J. D. Smith, C. V. Alonso, and E. J. Langendoen
(2009), Test of a method to calculate near-bank velocity and boundary
shear stress, J. Hyd. Eng., 135, 588–601.

Kunle, R. A. (1980), Bed-surface size changes in gravel-bed channels, J.
Hydraul. Eng., 115, 731–741.

Lamb, M. P., W. E. Dietrich, and J. G. Venditti (2008), Is the critical
Shields stress for incipient sediment motion dependent on channel-bed
slope?, J. Geophys. Res., 113, F02008, doi:10.1029/2007JF000831.

Lee, A. J., and R. I. Ferguson (2002), Velocity and flow resistance in step-
pool streams, Geomorphology, 46, 59–71.

Lenzi, M. A. (2001), Step-pool evolution in the Rio Cordon, northeastern
Italy, Earth Surf. Processes Landforms, 26, 991–1008.

Lenzi, M. A. (2004), Displacement and transport of marked pebbles, cob-
bles and boulders during floods in a steep mountain stream, Hydrol.
Processes, 18, 1899–1914.

Lenzi, M. A., L. Mao, and F. Comiti (2006), When does bedload transport
begin in steep boulder-bed streams? Hydrol. Processes, 20, 3517–3533,
doi:10.1002/hyp.6168.

Lenzi, M. A., V. D. D’Agostino, and P. Billi (1999), Bedload transport in
the instrumented catchment of the Rio Cordon Part I : Analysis of bed-
load records, conditions and threshold of bedload entrainment, Catena,
36, 171–190.

Lenzi, M. A., L. Mao, and F. Comiti (2004), Magnitude-frequency analysis
of bedload data in an Alpine boulder bed stream, Water Resour. Res., 40,
W07201, doi:10.1029/2003WR002961.

Lepp, L. R., C. J. Koger, and J. A. Wheeler (1993), Channel erosion
in steep gradient, gravel-paved streams, Bull. Assoc. Eng. Geol., 30,
434–454.

Li, G., and A. D. Abrahams (1996), Correction factors in the determination
of mean velocity of overland flow, Earth Surf. Processes Landforms, 21,
509–515.

Luk, S. H., and W. Merz (1992), Use of the salt tracing technique to deter-
mine the velocity of overland flow, Soil Tech., 5, 289–301.

W01541 YAGER ET AL.: PREDICTION OF SEDIMENT TRANSPORT IN STEP-POOL CHANNELS W01541

19 of 20



MacFarlane, W. A., and E. Wohl (2003), Influence of step composition on
step geometry and flow resistance in step-pool streams of the Washington
Cascades, Water Resour. Res., 39(2), 1037, doi:10.1029/
2001WR001238.

Mao, L., and M. A. Lenzi (2007), Sediment mobility and bedload transport
conditions in an alpine stream, Hydrol. Processes, 21, 1882–1891,
doi:10.1002/hyp.6372.

Mao, L., G. P. Uyttendaele, A. Iroume, and M. A. Lenzi (2008), Field based
analysis of sediment entrainment in two high gradient streams located in
Alpine and Andine environments, Geomorphology, 93, 368–383.

Marion, D. A., and F. Weirich (2003), Equal-mobility bed load transport in
a small, step-pool channel in the Ouachita Mountains, Geomorphology,
55, 139–154, doi:10.1016/S0169-555X(03)00137-5.

Marcus, W. A., K. Roberts, L. Harvey, and G. Tackman (1992), An evalua-
tion of methods for estimating Manning’s n in small mountain streams,
Mountain Res. Dev., 12, 227–239.

Moore, W. L. (1943), Energy loss at the base of free overfall, Trans. Am.
Soc. Civ. Eng., 108, 1343–1360.

Mueller, E. R., J. Pitlick, and J. Nelson (2005), Variation in the reference
shields stress for bed load transport in gravel-bed streams and rivers,
Water Resour. Res., 41, W04006, doi:10.1029/2004WR003692.

Mueller, E. N., R. J. Batalla, C. Garcia, and A. Bronstert (2008), Modeling
bed-load rates from fine grain-size patches during small floods in a
gravel-bed river, J. Hydraul. Eng., 134, 1430–1439.

Nelson, J. M., R. L. Shreve, S. R. McLean, and T. G. Drake (1995), Role of
near-bed turbulence structure in bed load transport and bed form mechan-
ics, Water Resour. Res., 3, 2071–2086.

Nelson, P. A., J. G. Venditti, W. E. Dietrich, J. W. Kirchner, H. Ikeda, F.
Iseya, and L. S. Sklar (2009), Response of bed surface patchiness to
reductions in sediment supply, J. Geophys. Res., 114, F02005,
doi:10.1029/2008JF001144.

Nepf, H. M. (1999), Drag, turbulence, and diffusion in flow through emer-
gent vegetation, Water Resour. Res., 35, 479–489.

Nitsche, M., D. Rickenmann, J. M. Turowski, A. Badoux, and J. W. Kirch-
ner (2011), Evaluation of bedload transport predictions using flow resist-
ance equations to account for macro-roughness in steep mountain
streams, Water Resour. Res., 47, W08513, doi:10.1029/2011WR010645.

Papanicolaou, A., P. Diplas, C. Dancey, and M. Balakrishnan (2001),
Surface roughness effects in near-bed turbulence: Implications to sedi-
ment entrainment, J. Eng. Mech., 127(3), 211–218.

Parker, G. (1990), Surface-based bedload transport relation for gravel riv-
ers, J. Hyd. Res., 28, 417–436.

Parker, G. (2008), Sedimentation Engineering: Processes, management,
modeling and practice, Chapt. 3: Transport of gravel and sediment mix-
tures, edited by M. H. Garcia, ASCE, Virginia, 165–252.

Parker, G., P. C. Klingemen, and D. L. McLean (1982), Bedload and size
distribution in paved gravel-bed streams, J. Hydraul. Eng., 108, 544–571.

Rajaratnam, N., and M. R. Chamani (1995), Energy loss at drops, J.
Hydraul. Res., 33, 373–384.

Recking. A. (2009), Theoretical development on the effects of changing
flow hydraulics on incipient bed load motion, Water Resour. Res., 45,
W04401, doi:10.1029/2008WR006826.

Rice, C. E., K. C. Kadavy, and K. M. Robinson (1998), Roughness of loose
rock riprap on steep slopes, J. Hyd Eng. 124, 179–185.

Rickenmann, D. (1997), Sediment transport in Swiss torrents, Earth Surf.
Processes Landforms, 22, 937–951.

Rickenmann, D., and B. W. McArdell (2007), Continuous measurement of
sediment transport in the Erlenbach stream using piezoelectric bedload
impact sensors, Earth Surf. Processes Landforms, 32, 1362–1378.

Rouse, H. (1943), Discussion of Moore (1943), Trans. Am. Soc. Civ. Eng.,
108, 1383–1387.

Ryan, S. E., L. S. Porth, and C. A. Troendle (2005), Coarse sediment trans-
port in mountain streams in Colorado and Wyoming, USA, Earth Surf.
Processes Landforms, 30, 269–288, doi:10.1002/esp.1128.

Schmeeckle, M. W., J. M. Nelson, and R. L. Shreve (2007), Forces on sta-
tionary particles in near-bed turbulent flows, J. Geophysical Res., 112,
F02003.

Shvidchenko, A. B., and G. Pender (2000), Flume study of the effect of rel-
ative depth on the incipient motion of coarse uniform sediments, Water
Resour. Res., 36(2), 619–628.

Shvidchenko, A. B., G. Pender, and T. B. Hoey (2001), Critical shear stress
for incipient motion of sand/gravel streambeds, Water Resour. Res.,
37(8), 2273–2283.

Sklar, L. S., W. E. Dietrich, E. Foufoula-Georgiou, B., Lashermes, and D.,
Bellugi (2006), Do gravel bed river size distributions record channel net-
work structure?, Water Resour. Res., 42, W06D18 doi:10.1029/
2006WR005035.

Stock, J. D., and W. E. Dietrich (2003), Valley incision by debris flows:
Evidence of a topographic signature, Water Resour. Res., 39(4), 1089,
doi:10.1029/2001WR001057.

Thompson, S. M., and P. L. Campbell (1979), Hydraulics of a large channel
paved with boulders, J. Hydraul. Res., 17, 341–354.

Thorne, C. R., and L. W. Zevenbergen (1985), Estimating mean velocity in
mountain rivers, J. Hydraul. Eng., 111, 612–624.

Tucker, G. E., and K. X. Whipple (2002), Topographic outcomes predicted
by stream erosion models: Sensitivity analysis and intermodel compari-
son, J. Geophys. Res., 107(B9), 2179 , doi:10.1029/2001JB 000162.

Turowski, J. M., and D. Rickenmann (2011), Measuring the statistics of
bedload transport using indirect sensors, J. Hydraul. Eng., 137, 116–121.

Turowski, J. M., E. M. Yager, A. Badoux, D. Rickenmann, and P. Molnar
(2009), The impact of exceptional events on erosion, bedload transport
and channel stability in a step-pool channel, Earth Surf. Processes Land-
forms, 34, 1661–1673, doi:10.1002/esp.1855.

Wallerstein, N. P., C. V. Alonso, S. J. Bennett, and C. R. Thorne (2002),
Surface wave forces acting on submerged logs, J. Hydraul. Eng., 3, 349–
353.

Wathen, S. J., R. I. Ferguson, T. B. Hoey, and A. Werrity (1995), Unequal
mobility of gravel and sand in weakly bimodal river sediments, Water
Resour. Res., 31, 2087–2096.

Whiting P. J., J. F. Samm, D. B. Moog, and R. L. Orndorff (1999), Sedi-
ment-transporting flows in headwater streams, GSA Bull., 11, 450–466.

Wiberg, P. L., and J. D. Smith (1991), Velocity distribution and bed rough-
ness in high-gradient streams, Water Resour. Res., 27, 825–838.

Wilcock, P. R. (1993), Critical shear stress of natural sediments, J. Hydraul.
Eng., 119, 491–505.

Wilcock, P. R., and J. C. Crowe (2003), Surface-based transport model for
mixed-size sediment, J. Hydraul. Eng., 129, 120–128.

Wilcock, P. R., and J. B. Southard (1988), Experimental study of incipient
motion in mixed-size sediment, Water Resour. Res., 24, 1137–1151.

Wilcox, A. C., E. E. Wohl, and J. M. Nelson (2006), Flow resistance dy-
namics in step-pool channels: 2. Partitioning between grain, spill and
woody debris resistance, Water Resour. Res., 42, W05419, doi:10.1029/
2005WR004278.

Wohl, E., and D. M. Thompson (2000), Velocity characteristics along
a small step-pool channel, Earth Surf. Processes Landforms, 25,
353–367.

Yager, E. M. (2006), Prediction of sediment transport in steep, rough
streams, Ph.D. dissertation, Univ. of California, Berkeley.

Yager, E. M., J. W. Kirchner, and W. E. Dietrich (2007), Calculating bed-
oad transport in steep boulder bed channels, Water Resour. Res., 43,
W07418, doi:10.1029/2006WR005432.

Zimmermann, A. (2010), Flow resistance in steep streams: An experimen-
tal study, Water Resour. Res., 46, W09536, doi:10.1029/2009WR
007913.

Zimmermann, A. and M. Church (2001), Channel morphology, gradient pro-
files and bed stresses during flood in a step-pool channel, Geomorphology,
40, 311–327.

Zimmermann, A., M. Church, and M. A. Hassan (2008), Identification of
steps and pools from stream longitudinal profile data, Geomorphology,
102, 395–406, doi:10.1016/j.geomorph.2008.04.009.

W. E. Dietrich and J. W. Kirchner, Earth and Planetary Science Depart-
ment, University of California at Berkeley, 307 McCone Hall, Berkeley,
CA 94720-4767, USA.

J. W. Kirchner and B. W. McArdell, Swiss Federal Institute for
Forest, Snow and Landscape, Zürcherstrasse 111, CH-8903 Birmensdorf,
Switzerland.

E. M. Yager, Center for Ecohydraulics Research, Civil Engineering
Department University of Idaho, 322 E. Front St., Suite 340, Boise, ID
83702, USA. (eyager@uidaho.edu)

W01541 YAGER ET AL.: PREDICTION OF SEDIMENT TRANSPORT IN STEP-POOL CHANNELS W01541

20 of 20


