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[1] Water fluxes in catchments are controlled by physical processes and material
properties that are complex, heterogeneous, and poorly characterized by direct
measurement. As a result, parsimonious theories of catchment hydrology remain elusive.
Here I describe how one class of catchments (those in which discharge is determined by
the volume of water in storage) can be characterized as simple first-order nonlinear
dynamical systems, and I show that the form of their governing equations can be inferred
directly from measurements of streamflow fluctuations. I illustrate this approach using
data from the headwaters of the Severn and Wye rivers at Plynlimon in mid-Wales. This
approach leads to quantitative estimates of catchment dynamic storage, recession time
scales, and sensitivity to antecedent moisture, suggesting that it is useful for catchment
characterization. It also yields a first-order nonlinear differential equation that can be
used to directly simulate the streamflow hydrograph from precipitation and
evapotranspiration time series. This single-equation rainfall-runoff model predicts
streamflow at Plynlimon as accurately as other models that are much more highly
parameterized. It can also be analytically inverted; thus, it can be used to ‘‘do hydrology
backward,’’ that is, to infer time series of whole-catchment precipitation directly from
fluctuations in streamflow. At Plynlimon, precipitation rates inferred from streamflow
fluctuations agree with rain gauge measurements as closely as two rain gauges in each
catchment agree with each other. These inferred precipitation rates are not calibrated to
precipitation measurements in any way, making them a strong test of the underlying
theory. The same approach can be used to estimate whole-catchment evapotranspiration
rates during rainless periods. At Plynlimon, evapotranspiration rates inferred from
streamflow fluctuations exhibit seasonal and diurnal cycles that agree semiquantitatively
with Penman-Monteith estimates. Thus, streamflow hydrographs may be useful for
reconstructing precipitation and evapotranspiration records where direct measurements are
unavailable, unreliable, or unrepresentative at the scale of the landscape.
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1. Introduction

[2] The spatial heterogeneity and process complexity of
subsurface flow imply that any feasible hydrological model
will necessarily involve substantial simplifications and
generalizations. The essential question for hydrologists is
which simplifications and generalizations are the right ones.
Physically based rainfall-runoff models (see Beven [2001] for
an overview) attempt to link catchment behavior with mea-
surable properties of the landscape, but many properties
controlling subsurface flow are only measurable at scales

that are many orders of magnitude smaller than the catchment
itself. Thus, although it seems obvious that catchment models
should be ‘‘physically based,’’ it seems less obvious how
those models should be based on physics. Many hydrologic
models are based on an implicit premise that the microphys-
ics in the subsurface will ‘‘scale up’’ such that the behavior at
larger scales will be described by the same governing
equations (e.g., Darcy’s law, Richards’ equation), with ‘‘ef-
fective’’ parameters that somehow subsume the heterogene-
ity of the subsurface [Beven, 1989]. It is currently unclear
whether this upscaling premise is correct, or whether the
effective large-scale governing equations for these heteroge-
neous systems are different in form, not just different in the
parameters, from the equations that describe the small-scale
physics [Kirchner, 2006].
[3] This observation raises the question of how we can

identify the right constitutive equations to describe the
macroscopic behavior of these complex heterogeneous
systems. For decades, hydrologists have used characteristic
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curves to describe the macroscopic behavior of blocks of
soil, recognizing that these empirical functions integrate
across the complex and heterogeneous processes that gov-
ern water movement at the pore scale. Likewise, one can
pose the question of whether there are ‘‘characteristic
curves’’ at the scale of small catchments, that can usefully
integrate over the complexity and heterogeneity of the
landscape at all scales below, say, a few square kilometers.
And if such ‘‘characteristic curves’’ are meaningful and
useful at the scale of small catchments, can they also be
measured at that scale?
[4] Since at least the time of Horton [1936, 1937, 1941], a

major theme in catchment hydrology has been the interpre-
tation of streamflow variations in terms of the drainage
behavior of hillslope or channel storage elements [e.g., Nash,
1957; Laurenson, 1964; Lambert, 1969, 1972; Mein et al.,
1974; Brutsaert and Nieber, 1977; Rodriguez-Iturbe and
Valdes, 1979; van der Tak and Bras, 1990; Rinaldo et al.,
1991], whose parameter values are typically calibrated to the
observed hydrograph (see Beven [2001] and Brutsaert [2005]
for an overview). In some cases, these parameters can be
interpreted as reflecting basin-scale hydraulic properties
[e.g., Brutsaert and Nieber, 1977; Brutsaert and Lopez,
1998], and in others they can be correlated with catchment
geomorphic characteristics [e.g., Nash, 1959], facilitating
hydrologic prediction in ungauged catchments. However,
the form of the constitutive relationship (the storage-
discharge function) must normally be known in advance.
[5] Here I show that, if the catchment can be represented

by a single storage element in which discharge is a function of
storage alone, the form of this storage-discharge function can
be estimated from analysis of streamflow fluctuations. In

contrast to conventional methods of recession analysis (see
reviews by Hall [1968], Tallaksen [1995], and Smakhtin
[2001], and references therein), this approach does not
specify the functional form of the storage-discharge relation-
ship a priori, instead determining it directly from data. (For
further comparisons between previous work and the present
approach, see section 15.1 below.) Using this approach, one
can construct a first-order nonlinear differential equation
linking precipitation, evapotranspiration, and discharge, with
no need to account explicitly for changes in storage; these are
instead inferred from the resulting changes in discharge. This
single equation allows one to predict streamflow hydrographs
from precipitation and evapotranspiration time series. It can
also be inverted, allowing one to use streamflow fluctuations
to infer precipitation and evapotranspiration rates at whole-
catchment scale.

2. Field Site and Data

[6] The analysis presented here grew out of an explora-
tion of rainfall-runoff behavior at the Plynlimon catchments
in mid-Wales. Plynlimon has been a focal point of hydro-
logical research for at least four decades, resulting in several
hundred scientific publications [e.g., Calder, 1977; Kirby et
al., 1991; Beven and Binley, 1992; Sklash et al., 1996; Neal
et al., 1997b; Kirchner et al., 2000; Robinson and Dupeyrat,
2005; Marc and Robinson, 2007; Kirby et al., 1997, and
references therein]. The Plynlimon catchments comprise
roughly 20 km2 of the headwaters of the Wye and Severn
rivers (Figure 1); the Wye catchment is grassland, whereas
the Severn catchment was dominated by conifer plantations
during 1992–1996, the time period analyzed here. The Wye
and Severn rivers flow from adjacent catchments on the

Figure 1. Location map for the headwater catchments of the Severn and Wye rivers at Plynlimon, Wales
(52�270N, 3�430W), showing locations of automatic weather stations (circles) and gauging stations
(triangles).
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same upland massif, predominantly composed of Ordovi-
cian and Silurian mudstones, sandstones, shales, and slates,
and generally considered to be watertight [Kirby et al.,
1991]. Although borehole observations have shown clear
evidence for extensive groundwater circulation through
fractures down to depths of tens of meters [Neal et al.,
1997a; Shand et al., 2005], no evidence of substantial
intercatchment groundwater flow has been reported. The
soil mantles at both catchments are dominated by blanket
peats >40 cm thick at higher altitudes, podzols at lower
altitudes, and valley bottom alluvium, peat, and stagnohu-
mic gleys along the stream channels [Kirby et al., 1991].
[7] The climate of Plynlimon is cool and humid; monthly

mean temperatures are typically 2–3�C in winter and 11�–
13�C in summer, and annual precipitation is roughly 2500–
2600 mm/a, of which approximately 500 mm/a is lost to
evapotranspiration and 2000–2100 mm/a runs off as stream
discharge (Table 1). Precipitation varies seasonally, averag-
ing 280–300 mm/month during the winter (December/
January/February) but only 135–155 mm/month during
the summer (June/July/August). Rainfall is frequent; more
than 1 mm of rainfall occurs on about 45% of summer days
and over 60% of winter days. Frost can occur in any month
of the year, but snow accounts for only about 5% of total
annual precipitation, and persistent snow cover is rare
[Kirby et al., 1991].
[8] Precipitation and streamflow have been measured

continuously at Plynlimon since the 1970s by the Centre
for Ecology and Hydrology (formerly the Institute of
Hydrology). In addition to a network of ground-level
storage rain gauges that are read monthly, the Severn and
Wye catchments are each outfitted with a pair of automatic
weather stations, one near the bottom of each catchment and
one near the top (circles, Figure 1). These weather stations
provide hourly records of precipitation, as well as incoming
solar and net radiation, wet and dry bulb temperature, and
wind speed and direction, allowing estimation of potential
evapotranspiration via the Penman-Monteith method.
Streamflow is measured at 15-min intervals by a trapezoidal
critical depth flume on the Severn and a Crump weir on
the Wye, as well as by flumes on eight tributary streams
(triangles, Figure 1).
[9] This paper uses data from the four automatic weather

stations, the Severn triangular flume, and the Wye weir.
Data from 1992 through 1996 were selected for analysis,
because during this interval none of these instruments
suffered extended outages, with the result that a continuous,
consistent data set is available for the entire 5-year period.
Nevertheless, as with any long-term environmental data set,
anomalies occur in a small number of records (here, less
than 1% of the total). Each discharge and weather station
record was examined by eye for the entire 5-year period,
and clearly anomalous measurements were replaced with
interpolated values from adjacent reliable measurements, or
when necessary by appropriately scaled averages from other
stations. The 15-min discharge data were aggregated to
hourly sums, synchronized with the hourly weather station
data.
[10] Two brief extracts from the full 5-year record are

shown in Figure 2. As one can see, the Severn and Wye
rivers both respond promptly to rainfall inputs, but the Wye
is visibly more ‘‘flashy’’ than the Severn. In both catch-

ments, there is a clear correspondence between the intensity
and duration of rainfall events, and the timing and intensity
of storm runoff. Motivated by the rainfall-runoff behavior
observed at Plynlimon, the analysis below presents a
simple, analytically tractable, empirically testable frame-
work for understanding the hydrologic behavior of small
catchments. I now describe this analytical framework, and
will return to its application to the Plynlimon catchments in
section 5.

3. Catchment Hydrology as a First-Order
Dynamical System

[11] This analysis begins, as most catchment-scale hydro-
logical models do, with the conservation-of-mass equation,

dS

dt
¼ P � E � Q; ð1Þ

where S is the volume of water stored in the catchment,
measured in units of depth (e.g., mm of water), and P, E,
and Q are the rates of precipitation, evapotranspiration, and
discharge, respectively, in units of depth per time (e.g., mm
of water per hour). P, Q, E, and S are understood to be
functions of time, and are understood to be averaged over
the whole catchment.
[12] Applications of equation (1) should take account of

how its individual terms are measured, and the spatial scales
over which such measurements are applicable. Precipitation
measurements are intrinsically local, because precipitation
rates vary in space and time, and rain gauges are typically
many orders of magnitude smaller than the catchments that
they are used to represent. (New technologies such as
precipitation radar can provide spatially distributed esti-
mates of rainfall rates, but still must be benchmarked to
rain gauge data.) Estimates of evapotranspiration, whether
derived from Penman-Monteith methods, eddy correlation
instruments, or evaporation pans, also have effective foot-
prints that are orders of magnitude smaller than typical
catchments. Estimates of changes in storage, as measured
by piezometer wells and soil moisture probes, are likewise
highly localized, and are also strongly dependent on spa-
tially variable material properties of the subsurface. Of the
four terms in equation (1), only discharge is an aggregated
measurement for the entire catchment. Therefore the anal-

Table 1. Basic Physiographic and Hydrological Characteristics of

the Plynlimon Catchmentsa

Severn Wye

Drainage area (km2) 8.70 10.55
Altitude range (m) 319–738 341–738
Forest cover (%) 67.5 1.2
Strahler stream order 4 4
Drainage density (km/km2) 2.40 2.04
Main channel length (km) 4.6 7.3
Main channel slope (m/km) 67 36
Mean water fluxes 1972–2004

Precipitation (mm/a) 2553 2599
Streamflow (mm/a) 1987 2111
Evapotranspiration (mm/a) 566 488

aSources: Kirby et al. [1991] and Marc and Robinson [2007].
Evapotranspiration is calculated from the difference between precipitation
and streamflow averages.
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ysis presented here explores what one can learn about
catchment processes from fluctuations in streamflow, with-
out assuming that measurements of precipitation or evapo-
transpiration are spatially representative. The analysis also
makes no use of direct measurements of changes in storage,
because they are often unavailable.
[13] This analysis makes the fundamental assumption that

the discharge in the stream, Q, depends solely on the
amount of water stored in the catchment, S. That is, the
analysis assumes that there is some storage-discharge func-
tion f(S) such that

Q ¼ f Sð Þ: ð2Þ

This premise is not valid in every catchment, but in many
cases it can be a useful approximation, and it is an essential
assumption in the analysis that follows. Of course, in any
catchment some fraction of stream discharge may be
controlled by processes other than the release of water
from storage. Two obvious examples are direct precipitation
onto the stream surface itself, and precipitation onto areas

that are impermeable or saturated and are directly connected
to the stream. These processes will route precipitation
directly to discharge as bypassing flow, rather than adding it
to subsurface storage. The analysis presented here does not
require that bypassing flow is entirely absent, but assumes
that it is not a dominant component of discharge. If, instead,
discharge is dominated by bypassing flow, the approach
presented here may fail, because processes such as channel
routing (which are not treated in detail here) may dominate
the runoff response. A method for assessing the quantitative
significance of bypassing flow is presented in section 15.4.
[14] The premise that discharge depends on storage is

broadly consistent with the smaller-scale governing equa-
tions that drive subsurface transport. For example, the flow
of water downward through the unsaturated zone is con-
trolled by its matric potential and hydraulic conductivity,
which are both steep nonlinear functions of water content.
Flow in the saturated zone depends on the slope of the water
table, which varies with storage in the saturated zone, and
on the saturated hydraulic conductivity, which varies as a
function of depth; thus transmissivity also depends on the

Figure 2. Time series of hourly rainfall (gray) and discharge (solid black curves) for headwaters of the
Severn and Wye rivers during 20-day periods in (a, b) December 1993 and (c, d) March 1994. Rainfall
time series recorded in the two catchments are similar but not identical. Wye flows are more responsive to
storm events than Severn flows. Flows in both rivers generally increase when the catchment mass balance
is positive (rainfall flux is higher than discharge) and decrease when the mass balance is negative (rainfall
flux is lower than discharge). As a result, flow peaks in both streams occur at the end of rainfall events, as
rainfall fluxes drop below runoff fluxes and the catchment mass balance turns negative. This behavior is
consistent with the simple first-order dynamical system described in equations (1) and (2).
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total storage in the saturated zone. As a result, stream
discharge is often a steep nonlinear function of groundwater
levels in the surrounding catchment [e.g., Laudon et al.,
2004, Figure 6]. Many of the processes and rate coefficients
that control water flow in the subsurface are strongly, and
nonlinearly, dependent on storage.
[15] Nonetheless it is not clear how these nonlinear

relationships, which may differ from point to point across
the landscape, will combine to create a storage-discharge
relationship for the catchment as a whole. For this reason,
my approach assumes no particular functional form for the
storage-discharge relationship f(S), instead allowing both
the form of f(S) and its coefficients to be estimated directly
from runoff time series data. I assume only that Q is an
increasing single-valued function of S (dQ/dS > 0 for all Q
and S), and thus that the storage-discharge function is
invertible. Thus the discharge in the stream provides an
implicit measure of the volume of water stored in the
catchment:

S ¼ f �1 Qð Þ: ð3Þ

Equations (1) and (2) form a first-order dynamical system,
in which P, Q, E, and S are all understood to be functions of
time. This dynamical system would be particularly simple if
Q were a linear function of S. The properties of such linear
systems have been extensively studied in hydrology, but in
general Q will be a nonlinear function of S, resulting in a
richer spectrum of possible behaviors. This more general
nonlinear case is the focus of the analysis presented here.
[16] Regardless of the form that f(S) takes, the structure of

the dynamical system directly yields an important inference
concerning catchment storm response. Because Q is a func-
tion of S alone, storage (and thus discharge) will be ris-
ing whenever P � E > Q, and falling whenever Q > P � E.
The peak discharge (dQ/dt = 0) will coincide with the
peak storage (dS/dt = 0), which will occur when Q = P � E.
During storm events, the time of peak rainfall will gener-
ally occur during the rising limb of the hydrograph (when
P � E > Q and thus dS/dt > 0 and dQ/dt > 0). Because the
peak rainfall corresponds to rising flow, which by definition
will occur before the peak discharge, the peak flow will lag
the peak rainfall, even in the absence of any travel time delays
for pulses of stormflow to reach the weir. Furthermore, the
peak flow will occur as the rainfall rate falls below discharge,
and thus the mass balance (equation (1)) turns negative.
[17] The Severn and Wye rivers exhibit this pattern of

behavior, as Figure 2 shows. The Wye is somewhat more
responsive than the Severn to rainfall inputs, but both catch-
ments behave as the dynamical system of equations (1) and
(2) would predict: when rainfall fluxes exceed streamflow
fluxes (and thus the catchment mass balance is positive),
discharge increases, and when streamflow exceeds rainfall
(and thus the mass balance is negative), discharge decreases.
Peak flows occur as rainfall events are ending, when rainfall
fluxes drop below streamflow fluxes (and thus the mass
balance changes sign). Thus the lag to peak is determined
primarily by the duration of storm events; it is not a fixed
characteristic time scale of the catchment.
[18] This behavior is inherent in the structure of the

dynamical system described by equations (1) and (2),

because the derivative in equation (1) creates a dynamical
phase lag between fluctuations in precipitation and fluctua-
tions in streamflow. If storm runoff were dominated by
bypassing flow, and thus changes in catchment storage were
unimportant in the storm response, this phase lag would be
negligible. Figure 2 shows that this is not the case at
Plynlimon. In addition to this dynamical lag, there may
also be a travel time lag for stormflows to move down-
stream through the channel network. As shown in section 7
below, in the Severn and Wye catchments this travel time
lag is roughly 1 h, which is less than the width of the black
lines shown in Figure 2.

4. Estimating Catchment Sensitivity to Changes
in Storage: Theory

[19] Differentiating equation (2) with respect to time and
substituting equation (1) directly yields the following dif-
ferential equation for the rate of change of discharge
through time:

dQ

dt
¼ dQ

dS

dS

dt
¼ dQ

dS
P � E � Qð Þ: ð4Þ

The term dQ/dS will be crucial in the analysis that follows;
it is the derivative of the storage-discharge relationship f(S),
and represents the sensitivity of discharge to changes in
storage. Normally, derivatives like dQ/dSwould be expressed
in terms of S, but S cannot be directly measured at the
catchment scale for the reasons described in section 3.
However, because S is assumed to be a single-valued
function of Q, dQ/dS can also be expressed as a function of
Q, here defined as g(Q):

dQ

dS
¼ f 0 Sð Þ ¼ f 0 f �1 Qð Þ

� �
¼ g Qð Þ: ð5Þ

The function g(Q) will be called the ‘‘sensitivity function’’
because it expresses the sensitivity of discharge to changes
in storage. Mathematically, it is the implicit differential form
of the storage-discharge relationship; it measures how
changes in discharge are related to changes in storage, but
it does so as a function of Q (which is directly measurable)
rather than S (which is not). This makes it more useful than
the conventional form f 0(S) for the analysis that follows.
Figure 3 illustrates the relationship between the sensitivity
function g(Q) and the storage-discharge relationship f(S).
The function g(Q) can be estimated from observational data
by combining equations (5) and (4) to yield

g Qð Þ ¼ dQ

dS
¼

dQ=dt
dS=dt

¼
dQ=dt

P � E � Q
; ð6Þ

which implies that the slope of the storage-discharge
function f(S) can be determined from instantaneous
measurements of precipitation (P), evapotranspiration (E),
discharge (Q), and the rate of change of discharge (dQ/dt).
Of the three fluxes (P, E, and Q), discharge can be measured
more reliably than precipitation or evapotranspiration at the
whole-catchment scale, for the reasons described in section 3
above. Therefore equation (6) can be most accurately
estimated when precipitation and evapotranspiration fluxes
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are small compared to discharge (P � Q and E � Q).
Under these conditions, equation (6) is approximated by

g Qð Þ ¼ dQ

dS
� � dQ=dt

Q

����
P�Q;E�Q

: ð7Þ

Equation (7) implies that one can estimate the sensitivity
function g(Q) from the time series of Q alone. To do this,
one must identify intervals of time when precipitation and
evapotranspiration are small compared to discharge, but it is
not necessary to measure either P or E accurately as long as
their rough magnitude compared to Q is known. From the
sensitivity function g(Q), one can derive the storage-
discharge relationship f(S) by first inverting equation (5),

Z
dS ¼

Z
dQ

g Qð Þ ; ð8Þ

thus obtaining S as a function of Q, and then by inverting
this function to obtain Q as a function of S.
[20] Apart from the requirement that Q = f(S) must be an

increasing function of S (and thus that g(Q) must always be
positive), nothing in the approach outlined here requires f(S)
or g(Q) to have any particular mathematical form. In
practice, g(Q) will be an empirical function that is estimated
from streamflow time series data, and it could potentially
exhibit different functional forms in different catchments. A
few simple functional forms of g(Q) can be integrated and
inverted analytically to yield closed-form solutions for f(S).
For other functional forms, equation (8) can be solved by

numerical integration in order to construct an empirical
storage-discharge relationship.

5. Estimating Catchment Sensitivity to Changes
in Storage: Practical Details

[21] Implementing this approach in practice requires
identifying times when precipitation and evapotranspiration
fluxes are small enough that equation (6) will be well
approximated by equation (7). I used two different methods
to identify these low-precipitation, low-ET periods at Plyn-
limon, and both yielded similar results. The first approach
used the automatic weather station data to estimate potential
evapotranspiration via the Penman-Monteith method. The
estimated potential evapotranspiration does not need to
accurately reflect actual evapotranspiration, but only its
general magnitude, because equation (7) does not require
estimating a mass balance for the catchment, but only
identifying times when the mass balance is dominated by
discharge. To implement this approach at Plynlimon, I
selected the hourly records for which discharge was at least
10 times larger than both potential evapotranspiration and
precipitation (as measured by the weather station rain
gauges).
[22] The second approach assumes that potential evapo-

transpiration fluxes in humid catchments should be relatively
small at night, because relative humidity is typically near
100% (and thus the vapor pressure deficit is small), and
there is no solar radiation to drive transpiration fluxes (see
Figure 4). To implement this approach at Plynlimon, I
selected the hourly records for nighttime (defined as times
for which solar flux was less than 1 W/m2 averaged over
the hour in question, the previous hour, and the following
hour), and during which there was also no recorded rainfall
within the previous 6 h or the following 2 h. Selecting either
these rainless night hours, or hours with negligible precipi-
tation and potential evapotranspiration (as described above),
yields roughly 1600 to 2000 h/a at Plynlimon. Although
these two methods for identifying low-precipitation, low-
evapotranspiration conditions do not result in exactly the
same records being analyzed (only about half of the records
overlap between the two approaches), they both yield sim-
ilar results in the analysis that follows. The analysis shown
below is based on the rainless night hours at the Severn and
Wye catchments. Figure 5 shows an example of these rain-
less nighttime periods, for a short segment of the Severn
River time series.
[23] From hourly streamflow records during periods

when P � Q and E � Q, we can estimate g(Q) in equation
(7) by plotting the flow recession rate (�dQ/dt) as a
function of discharge (Q), as shown in Figure 6. Graphs
like Figure 6, here termed ‘‘recession plots,’’ were proposed
by Brutsaert and Nieber [1977] as an alternative to con-
ventional recession curves, in which discharge is plotted as
a function of time. Recession plots are particularly appro-
priate in the present case, because equation (7) requires low-
precipitation, low-evaporation conditions, which usually
form a highly discontinuous time series (as in Figure 5).
Such a discontinuous time series would be ill suited to
conventional recession analysis (although others have dealt
with this problem by splicing short intervals together into
pseudocontinuous recession curves; see Lamb and Beven
[1997] for one such analysis). Recession plots such as

Figure 3. Explanatory diagram for the catchment sensi-
tivity function g(Q), the implicit differential form of the
storage-discharge relationship f(S). At any particular point
along the storage-discharge relationship Q = f(S) (gray
curve), the local sensitivity of discharge to changes in
storage is expressed by the local derivative, dQ/dS (the
slope of the dashed line). Normally, such a derivative is
expressed as a function of the variable on the horizontal axis
(i.e., as the derivative function f 0(S)). However, because the
storage-discharge relationship is a monotonic function and
therefore is invertible, the derivative dQ/dS can also be
expressed as a function of discharge, g(Q) = f 0(f �1(Q)).
This implicit form of the derivative is useful because
discharge is directly measurable and storage is not.
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Figure 6 provide a general way to display and analyze
recession behavior, without presupposing that the underly-
ing data are continuous in time.
[24] Following Brutsaert and Nieber [1977], I estimate

the rate of flow recession as the difference in discharge
between two successive hours, �dQ/dt = (Qt�Dt � Qt)/Dt,
and plot this as a function of the average discharge over the
two hours, (Qt�Dt + Qt)/2. Estimating the terms in this way
avoids any artifactual correlation between Q and �dQ/dt.
Because Q and �dQ/dt will both typically span several
orders of magnitude, their relationship to one another can
be best viewed on log-log plots. Figures 6a and 6b show
the relationship between discharge and flow recession for
hourly measurements from the Severn and Wye rivers (gray
dots, Figure 6). In both streams, the rate of flow recession
is roughly a power law function of discharge. Brutsaert and

Nieber [1977] used plots like Figure 6 to define the lower
envelope of �dQ/dt as a function of Q, under the assump-
tion that these points would be least affected by evapotrans-
piration, but in practice, much of the spread in �dQ/dt at
any particular value of Qmay be due to stochastic variability
and measurement noise [Rupp and Selker, 2006a], partic-
ularly over the short intervals between individual hourly
measurements. The present approach instead seeks the best
estimate of g(Q) as an average description of the behavior of
the catchment. This requires estimating the central tendency
of �dQ/dt rather than its lower bound.
[25] Accurately estimating g(Q) requires careful attention

to several details. The function g(Q) must correctly describe
the relationship between Q and �dQ/dt when they are both
small, and log-log plots like Figure 6 expand this domain.
The individual hourly data exhibit significant scatter on log

Figure 4. Solar flux, Penman-Monteith potential evapotranspiration, and relative humidity as a function
of time of day for (left) June and (right) December, calculated from hourly measurements at the Cefn
Brwyn automated weather station in the Wye catchment, 1992–1996. Black dots and lines indicate
means and standard deviations. During hours of darkness, potential evapotranspiration is nearly zero, and
relative humidity is close to 100%.
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Figure 5. Severn catchment hourly rainfall (vertical gray bars) and Severn River streamflow (gray
curve) for March and April 1994, with rainless nighttime intervals highlighted in black.

Figure 6. Recession plots for the (left) Severn and (right) Wye rivers. (top) Flow recession rates
(�dQ/dt) as a function of flow (Q) for individual rainless nighttime hours (gray dots, approximately
8,000 points per plot) and for averages of �dQ/dt, binned as described in the text (black dots).
(middle) The averages and their associated standard errors (gray bars show ±1 standard error), with
best fit lines calculated by least squares regression with inverse variance weighting. (bottom) Residuals
from these best fit lines. The binned means (black dots) deviate from the fitted lines by less than their
standard errors, suggesting that the fitted lines are a quantitatively adequate description of the mean
recession behavior of these catchments.
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axes, particularly at discharges below about 0.1 mm/h. This
scatter could arise from at least four sources: (1) random
measurement noise, (2) coarse graining due to the finite
discretization of discharge measurements, and thus of cal-
culated flow recession rates (as is visually evident from the
horizontal stripes in Figures 6a and 6b), (3) effects of any
precipitation or evapotranspiration that may occur but be
too small to be directly measurable, and (4) differences
between the structure of the real-world catchment and the
idealized dynamical system hypothesized here. Noise aris-
ing from any of these sources should introduce more scatter
in the log of �dQ/dt at times when Q and �dQ/dt are small,
as Figures 6a and 6b show.
[26] On a log scale, this scatter can introduce a bias, since

fluctuations toward zero are larger in log units than equivalent
fluctuations away from zero. Indeed, at lowQ, there are many
points for which discharge is constant or increasing, and thus
�dQ/dt for these points cannot be plotted on a log axis at all.
It might seem logical to simply exclude such points from the
analysis, under the assumption that any such points cannot
correspond to flow recession. However, many such points
may represent random fluctuations around an average reces-
sion trend. Therefore they should not be excluded, because
preferentially excluding random deviations in one direction
but not the other would lead to biased estimates of the average
recession rate �dQ/dt at any given Q.
[27] Instead, the scatter at low Q must be properly taken

into account in order to estimate the functional relationship
between �dQ/dt and Q. In Figure 6, I do this by binning the
individual hourly data points into ranges of Q, and then
calculating the mean and standard error for �dQ/dt and Q
within each bin (including values of �dQ/dt � 0, which
cannot be displayed on log axes). These means are the black
dots in Figure 6. Working from the highest values of Q to
the lowest, I delimit bins that span at least 1% of the
logarithmic range in Q, and that include enough points that
the standard error of �dQ/dt within the bin is less than half
of its mean. The criterion std.err.(�dQ/dt) � mean(dQ/dt)/2
is a first-order Taylor approximation to the criterion
std.err.(ln(�dQ/dt)) � 0.5, which cannot be directly evalu-
ated when dQ/dt has both positive and negative values. The
binned averages reflect the average recession rate �dQ/dt at
each flow rate Q, without being unduly influenced by the
stochastic scatter in �dQ/dt when Q is small.
[28] I then fit smooth curves to the binned means (black

dots) using least squares regression, weighted by inverse
variance (that is, by the reciprocal of the square of the standard
errors of each binned average). This approach keeps highly
uncertain points from exerting too much influence on the
regression. This approach also yields the maximum-likelihood
estimator for the best fit curve, if the deviations of the black
dots from the true relationship are approximately normal. This
is likely to be the case, because according to the central limit
theorem, the errors in the binned means (black dots) should be
distributed almost normally even if the individual measure-
ments (gray dots) are not, since each black dot is typically
calculated by averaging many individual points. As the
residual plots at the bottom of Figure 6 show, the best fit
curves fall within one standard error of nearly all of the binned
means, implying that they capture nearly all of the systematic
relationship between ln(�dQ/dt) and ln(Q). If, on the other
hand, the best fit curves fell outside the error bars of many of

the binned means, this would indicate that the curves were
incorrectly estimated or were not flexible enough to follow the
structural relationship between ln(�dQ/dt) and ln(Q).
[29] In the absence of a strong theoretical expectation for

the storage-discharge relationship to have a particular func-
tional form, one must choose an empirical function to fit to
the binned means in Figure 6. To fit the black dots in
Figure 6, I chose a quadratic curve because it is both flexible
enough to follow the major features of the data and smooth
enough to permit modest extrapolation beyond the range of
the black dots. This quadratic function leads directly to an
expression for g(Q) as a quadratic in logs,

ln g Qð Þð Þ ¼ ln
� dQ=dt

Q

����
P�Q;E�Q

 !
� c1 þ c2 ln Qð Þ þ c3 ln Qð Þð Þ2;

ð9Þ

with parameter values of c1 = �2.439 ± 0.017, c2 = 0.966 ±
0.035, and c3 = �0.100 ± 0.016 for the Severn River, and
parameter values of c1 = �2.207 ± 0.028, c2 = 1.099 ±
0.048, and c3 = �0.002 ± 0.018 for the Wye River, obtained
by polynomial least squares regression. The coefficient c2 is
one less than the slope of the log-log plots in Figure 6,
owing to the factor of Q in the denominator of equation (9).
[30] The fitted curves for the Severn and Wye rivers look

similar in Figure 6, although when they are overlain on one
another, small differences are visually apparent (Figures 7a
and 7b). Nonetheless, when these fitted curves are trans-
formed to storage-discharge relationships, they are visually
quite distinct (Figures 7c and 7d). Notably, the Wye River’s
storage-discharge relationship is more sharply curved than
the Severn’s, which is broadly consistent with the Wye’s
more abrupt response to precipitation, as shown in Figure 2.
Integrating these storage-discharge relationships yields the-
oretical recession curves (discharge as a function of time);
as Figures 7e and 7f show, the recession curves for the two
catchments are visually similar, despite the obvious differ-
ences between their storage-discharge relationships. This
observation suggests that conventional analyses of recession
curves may not detect important differences in storage-
discharge relationships between catchments. These differ-
ences are, however, apparent from the analysis outlined
above.

6. PowerLawRelationshipsBetweenQand�dQ/dt:
An Idealized Approximation

[31] Log-log recession plots such as Figure 6 are often
approximately linear, suggesting a power law relationship
between discharge Q and the recession rate �dQ/dt,

� dQ

dt
¼ aQb; ð10Þ

where b is the log-log slope of the best fit line. Following
the fundamental contributions of Horton [1941] and
Brutsaert and Nieber [1977], this power law recession
behavior has been used to characterize catchments in a
number of ways, usually based on a nonlinear reservoir
model or a Boussinesq representation of flow in the
subsurface [e.g., Troch et al., 1993; Brutsaert and Lopez,
1998; Tague and Grant, 2004; Rupp and Selker, 2006b;
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Lyon and Troch, 2007; Rupp and Woods, 2008]. Power law
recession relationships are also analytically tractable in the
dynamical system outlined above, and imply an interesting
family of storage-discharge relationships f(S). It bears
emphasis that these idealized power law functions are only
a special case in the general analytical approach outlined in
this paper, and I will return to the more general analysis in
the following section.
[32] A power law relationship between Q and �dQ/dt, as

in equation (10), would imply that g(Q) is

g Qð Þ ¼ dQ

dS
¼ dQ=dt

�Q
¼ aQb�1: ð11Þ

Equation (8) thus becomes

Z
dS ¼

Z
1

a
Q1�bdQ; ð12Þ

which can be solved as

S � So ¼
1

a

1

2� b
Q2�b; ð13Þ

where So is a constant of integration. Equation (13) can be
inverted to obtain f(S):

Q ¼ f Sð Þ ¼ 2�b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� bð Þa S � Soð Þ

p
: ð14Þ

Figure 7. Comparison of recession behavior and storage-discharge relationships for the Severn and
Wye catchments. Recession plots on (a) log-log and (b) linear axes illustrate differences between the two
catchments’ drainage characteristics. Data points are binned averages from Figure 6. The differences in
the recession plots for the two catchments (Figures 7a and 7b) imply differences in their storage-discharge
relationships as well, shown on (c) log linear and (d) linear axes. The different shapes of the inferred
storage-discharge relationships are meaningful, but their relative placement is not, as equation (8) cannot
determine absolute levels of storage. The two catchments’ storage-discharge relationships are visibly differ-
ent, but their recession curves, shown on (e) log linear and (f ) linear axes, are almost indistinguishable.
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In equation (10) and thus also in equation (14), the
dimensions of the constant a will vary with b, as
length(b�1)/(2�b)time1/(2�b), for dimensional consistency.
Equation (14) can also be rewritten in a more dimensionally
straightforward form as

Q ¼ f Sð Þ ¼ Qref S � Soð Þ=k1ð Þ1= 2�bð Þ; ð15Þ

where Qref is an arbitrary reference discharge, and the
scaling constant k1 = (Qref

2�b)/[(2 � b)a] has the same
dimensions as storage.
[33] Equations (14) and (15) have three classes of solu-

tions, and in each case the constant of integration So means
something different. If b < 2, equation (14) yields Q as a
power function of S, with So representing the residual
storage remaining in the catchment when discharge drops
to zero. In the special case where b = 1, f(S) is linear and the
conventional results for linear reservoirs (such as log linear
recession curves) are obtained. As b increases from 1
toward 2, f(S) becomes an increasingly steep power func-
tion, with the exponent 1/(2 � b) in equation (15) approach-
ing infinity as b approaches 2.
[34] When b = 2, the solution to equation (8) is an

exponential function,

Q ¼ f Sð Þ ¼ Qref e
a S�Soð Þ; ð16Þ

where So now represents the value of storage when Q = Qref.
Note that in equation (16), there will be some finite
discharge at all values of S, allowing storage to decline
indefinitely.
[35] When b is greater than 2, equations (14) and (15)

become hyperbolic, and the meaning of So changes signif-
icantly. Values of b > 2 imply that 2 � b is negative, so
equations (14) and (15) will yield imaginary values of Q
unless S is less than So. Thus when b > 2, So is no longer the
lower bound to storage (at which discharge would decrease
to zero); instead, So is the upper limit to storage, unreach-
able in practice, at which discharge would become infinite
(for a different but mathematically equivalent interpretation,
see Rupp and Woods [2008]). When b > 2, the behavior of
equation (15) can be seen more clearly if it is rewritten as

Q ¼ f Sð Þ ¼ Qref

So � Sð Þ=k2ð Þ1= b�2ð Þ ; ð17Þ

where Qref is again an arbitrary reference discharge, and
k2 = �k1 = (Qref

2�b)/[a(b � 2)] again has the same
dimensions as storage. Equation (17) is equivalent to (15),
but is easier to understand in this form because the scaling
constant k2 and the exponent 1/(b � 2) are both positive
when b > 2, whereas in equation (15) the scaling constant k1
and the exponent 1/(2 � b) would both be negative.
[36] The best fit values of b, obtained from Figure 6 by

linear regression, are b = 2.168 ± 0.017 for the Severn River
and b = 2.103 ± 0.015 for the Wye River. (These values
differ somewhat from the linear terms in the polynomial
regressions reported above, because of collinearity between
the linear and quadratic terms in those polynomial expres-
sions). These best fit values of b both exceed b = 2 by more
than six standard errors. Thus, to the extent that the Severn

and Wye catchments could both be approximated by power
law recession plots, they would both appear to exhibit the
hyperbolic behavior described by equation (17). Thus the
hyperbolic solution represented by equation (17) may be
more than just a mathematical oddity, and may be useful for
understanding the behavior of flashy hydrologic systems.
[37] Figure 8 shows log-log recession plots (similar to

Figure 6) for a range of exponents b, along with the
corresponding storage-discharge relationships, and the
resulting recession curves as functions of time. As
Figure 8b illustrates, the storage-discharge relationship
becomes dramatically more nonlinear as b increases. When
b is greater than 2, discharge increases more than exponen-
tially as a function of storage; that is, the log of Q curves
upward as a function of S (Figure 8c). Figure 8d shows
hypothetical recession curves of log(Q) as a function of
time, derived by integrating equations (1) and (2), or,
alternatively, equations (4) and (11). As Figure 8d shows,
these logarithmic recession curves become increasingly
nonlinear as b increases, and are very sharply curved when
b is greater than 2.

7. Simulating Hydrographs
From Storage-Discharge Relationships

[38] From the preceding discussion, one can devise a
straightforward strategy for rainfall-runoff modeling using
the methods outlined above. The discharge sensitivity
function g(Q) could be numerically integrated (or analyti-
cally integrated if its functional form is simple enough),
yielding the storage-discharge relationship f(S). One could
then iteratively simulate the simple dynamical system
formed by Q = f(S) and dS/dt = P � E � Q, initializing
this system at some beginning time step using S = f �1(Q).
From time series of P and E, one could then simulate the
time series of Q.
[39] However, because Q is a differentiable and invertible

function of S, the dynamical system of equations (1) and (2)
can be solved in a more elegant way that does not require
explicitly accounting for storage at all. Combining equa-
tions (4) and (5), one directly obtains

dQ

dt
¼ dQ

dS

dS

dt
¼ g Qð Þ P � E � Qð Þ; ð18Þ

which is a first-order nonlinear differential equation for Q
that depends only on the values of P and E over time.
Therefore one can simulate the streamflow hydrograph
directly from time series of P and E by integrating equation
(18) through time, given only a single value of Q to initialize
the integration. This approach is more direct than explicitly
solving equations (1) and (2), for two reasons. First, it avoids
the need to know the antecedent moisture conditions at the
beginning of a simulation. Second, and more significantly, it
avoids the potentially difficult process of inferring the
storage-discharge relationship f(S) from the sensitivity
function g(Q). Where, one might ask, has the storage
variable gone? Note that in the conservation of mass
equation, storage appears only as its time derivative; that
is, one never needs to know the value of storage, but only its
rate of change through time. Thus one can use a differential
form of the storage-discharge function. If one uses the
implicit differential form, g(Q), one can eliminate S as an
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explicit variable completely. In other words, because
discharge is a function of storage, changes in storage can
be estimated from changes in discharge, as long as one
accounts for the relationship between them, which is
expressed by g(Q).
[40] Implementing this approach requires attention to two

practical details. The first detail concerns time lags in the
catchment system. Owing to the time required for water to
transit through the channel network, changes in discharge
measured at the catchment outlet may lag behind changes in
catchment storage. Field measurements show a typical flow
velocity of roughly 1 m/s for the Severn [Beven, 1979],
implying travel times of roughly 1 h between channel heads
and the catchment outlet. Changes in subsurface storage
may also lag behind precipitation inputs because of the time
required for precipitation to infiltrate sufficiently to affect
the hydraulic potentials that control stream discharge. Both
of these time lags imply that changes in discharge, as
observed at the outlet, may lag behind precipitation inputs

and thus behind the predictions of equation (18). These
travel time lags are different from the phase lag that is
inherent in this dynamical system (as described in section 3
above). The phase lag is captured in equation (18) but the
travel time lags are not; thus they could potentially intro-
duce timing errors in synthetic hydrographs. Any such
travel time lags, however, will not affect the estimation of
g(Q), because that is based on Q and dQ/dt, which are
measured simultaneously at the catchment outlet.
[41] A straightforward strategy for estimating the travel

time lag can be inferred from the form of equation (18).
Equation (18) implies that the rate of change of discharge,
dQ/dt, should be correlated with the balance between
precipitation, evapotranspiration, and discharge. Variations
in P � E � Q will be dominated by variations in P, because
precipitation is more variable than either evapotranspiration
or discharge; for the Severn and Wye catchments, the
variance of hourly P is over five times the variance of
hourly Q, and over 50 times the variance of Penman-

Figure 8. (a) Idealized power law recession plots, with corresponding relationships between storage and
discharge (on both (b) linear and (c) logarithmic scales) and (d) idealized recession curves on log linear
axes. In Figures 8a and 8d curves correspond to equation (10), and in Figures 8b and 8c curves
correspond to equations (15) and (17) for a range of exponents (b); values of k are 1 in all cases. Curves
for b < 2 and b > 2 are shown in gray and black, respectively. When b < 2, the storage-discharge
relationship is a power function that declines to zero as S declines to the residual storage level So, which
has been set at the left edge of Figures 8b and 8c. When b > 2, the storage-discharge relationship is
hyperbolic, becoming infinitely steep as S rises toward the spillover level So, which has been set at the
right edge of Figures 8b and 8c. Discharge grows more than exponentially as a function of storage when
b > 2 (black curves); that is, the storage-discharge relationship curves upward on log linear axes (Figure
8c) but curves downward for b < 2 (gray curves). Logarithmic recession curves (Figure 8d) are nonlinear
for b > 1, with the degree of curvature increasing as b increases.
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Monteith estimates of hourly E. Therefore variations in dQ/
dt should be correlated with variations in P, and any travel
time lags should be apparent in the cross correlation
between precipitation and dQ/dt. The cross correlation
between P and dQ/dt peaks at lags of 1–2 h for both the
Severn and Wye catchments, indicating a time lag of 1–2 h
between changes in precipitation and changes in discharge
as measured at the outlet. Lags this brief are of little
consequence for simulating streamflow, since discharge is
highly autocorrelated over such short time scales. Nonethe-
less, these lags can be taken into account straightforwardly
by using appropriately lagged P and E time series in
equation (18). The results shown in Figures 9 and 10
incorporate a 1-h lag; this is less than the widths of the
lines in the graphs.

[42] The second detail that should be considered is the
risk of numerical instabilities if equation (18) is integrated
using Euler’s method, because the term g(Q) 
 Q is generally
nonlinear, and Q typically varies by many orders of mag-
nitude. Usually a better approach will be to integrate the log
transform of equation (18),

d ln Qð Þð Þ
dt

¼ 1

Q

dQ

dt
¼ g Qð Þ

Q
P � E � Qð Þ ¼ g Qð Þ P � E

Q
� 1

	 

:

ð19Þ

Because ln(Q) will normally be locally much smoother than
Q as a function of time, (19) will be easier than (18) to
integrate.

Figure 9. Synthetic hourly discharge time series (dotted black curves) predicted by equation (19),
compared with measured discharge (solid black curves) and hourly rainfall (gray), for the Severn and
Wye rivers during 20-day periods in (a, b) December 1993 and (c, d) March 1994. Predicted discharge is
generally similar to observed discharge and mirrors the differences in storm response between the two
catchments. Parameters of g(Q) were determined from Figure 6; no parameters were calibrated to the time
series. Results are not sensitive to assumed evapotranspiration rates; predictions for E = Eo and E = 0
differ by less than the width of the plotted lines.
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[43] As Figures 9 and 10 show, this approach produces
synthetic hydrographs that closely resemble the streamflow
time series at Plynlimon. The hydrographs shown in
Figures 9 and 10 were synthesized by iterating (19) on an
hourly time step, using fourth-order Runge-Kutta integra-
tion. The g(Q) functions for the two catchments were
obtained directly from Figure 6, and were not calibrated
to the time series. The only calibration consisted of rescal-
ing the Penman-Monteith potential evapotranspiration esti-
mates Eo by an adjustable coefficient kE to obtain the
evapotranspiration time series E = kE Eo; a single value of
kE was fitted for the entire 5-year period 1992–1996. The
analysis contains no other adjustable coefficients.
[44] As Figure 9 shows, the synthetic hydrographs cor-

rectly predict the general magnitude and timing of storm
response at the two catchments, and generally reproduce the
shape of the stormflow recessions. The synthetic hydro-
graphs even reproduce the subtle differences in storm
response between the two catchments; stormflow peaks in
the Wye River are higher and narrower, with somewhat
more rapid recessions. Note in particular that no parameters
were adjusted to fit the stormflow periods shown in Figure 9.
The two periods shown in Figure 9 correspond to relatively
wet conditions, when the synthetic hydrographs (dashed
lines) are insensitive to kE and are therefore effectively free
of any direct calibration. Nonetheless the results shown in
Figure 9 compare well with much more complex models
that have been applied to the Plynlimon catchments, with
extensive parameter calibration [e.g., Rogers et al., 1985;
Bathurst, 1986].
[45] Catchment hydrologic models often perform rela-

tively well in wet conditions, but break down during drier
conditions. A model’s low-flow characteristics are con-
cealed when hydrographs are plotted on linear axes as in
Figure 9, because flow variations spanning orders of mag-
nitude (i.e., all except the highest flows) will appear as
nearly horizontal lines close to the bottom of the plot. For
this reason it is diagnostic to also compare synthetic and

measured hydrographs on logarithmic scales, as in
Figure 10. As Figure 10 shows, the synthetic hydrographs
reproduce the measured behavior in both catchments rea-
sonably well during both wet periods and the drier intervals
between them. The quantitative agreement between the
synthetic and observed hydrographs on logarithmic scales,
as measured by the Nash-Sutcliffe efficiency, is 0.91 and
0.86 for the Severn and Wye rivers, respectively, over the
5 years 1992–1996. These results compare favorably with
the Nash-Sutcliffe efficiencies of other hydrologic models
that are much more highly parameterized [Perrin et al.,
2001].

8. Cross Validation of Streamflow Predictions

[46] Although the recession plots in Figure 6 contain only
fragmentary information about the original time series, it is
reasonable to ask whether the approach outlined above is
circular, given that it requires information from the hydro-
graph, which it then predicts. (The same question can be
raised more pointedly for all hydrologic models that are
calibrated directly to the hydrograph, which is to say
virtually all hydrologic models.) A clear test, which is not
circular, can be obtained from the following cross-validation
exercise. I estimated g(Q) and kE by the methods outlined
above, but using streamflow data from just 1 year of the
5-year time series. I then used these estimates of g(Q) and
kE to generate synthetic hydrographs for each of the other
4 years of record. The 5 years encompass widely varying
conditions, including the third wettest and third driest
years in 33 years of precipitation records at the Severn
[Marc and Robinson, 2007], with seasonal rainfall totals
varying by more than a factor of two. Thus this can be
considered a ‘‘differential split-sample test’’ in the terminol-
ogy of Klemes [1986]. Such tests are still relatively uncom-
mon in the modeling literature, and models often fail them
[e.g., Seibert, 2003].

Figure 10. Synthetic hourly hydrographs for the Severn and Wye rivers (dotted curves) generated by
equation (19) compared with measured hourly hydrographs (solid curves) and hourly rainfall (gray).
Streamflows are shown on logarithmic scales to emphasize low-flow behavior. Parameters of g(Q) were
determined from Figure 6, not calibrated to the hydrographs. The only free parameter was the
evapotranspiration scaling constant kE, fitted to the entire 5-year period 1992–1996. Hydrographs for
1994 are shown; other years are similar.
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[47] The results of this exercise are shown in Table 2. The
diagonal elements of the matrices indicate the Nash-
Sutcliffe efficiencies for calibrations: that is, for cases
where the function g(Q) and the coefficient kE have been
estimated for the same year that the predictions are subse-
quently tested against. Off-diagonal elements show model
performance for nontrivial validation; that is, for cases
where none of the test data have been used to estimate
g(Q) and kE. The off-diagonal and on-diagonal elements
have similar values, indicating that this approach can
successfully simulate hydrographs that it has not already
been estimated from.
[48] Figure 11 shows the fitted curves derived from

recession plots (as in Figures 6 and 7) for each of the
5 years, and the corresponding hydrological sensitivity
functions g(Q) and the storage-discharge relationships that
they imply. The recession plots, sensitivity functions, and
storage-discharge relationships are roughly consistent from
year to year (Figure 11). For example, the hydrological
sensitivity functions for the Wye catchment are systemati-
cally greater than those of the Severn catchment across all of
the years. Likewise, the storage-discharge relationships for
the Wye catchment are distinctly steeper than those for the
Severn catchment, regardless of which year’s data are used
to estimate them. The derived curves for the hydrologic
sensitivity function and the storage-discharge relationship

diverge somewhat at the highest and lowest flows, as would
naturally be expected because these flows involve extrap-
olations beyond the data in the recession plots.
[49] However, even with these extremes taken into ac-

count, Figure 11 implies that the sensitivity functions g(Q)
and the storage-discharge relationships f(S) for the two
catchments are reasonably stable characteristics of the
catchments themselves, and are relatively insensitive to
the idiosyncrasies of the particular data observed in any
specific time interval. This is essential if we are to use g(Q)
and f(S) for catchment characterization, or for operational
forecasting of rainfall-runoff behavior. As Table 2 shows,
parameter values estimated from one time period yield
reasonable predictions of streamflow behavior for other
periods with different climatic conditions, suggesting that
this simple dynamical system may be useful for operational
forecasting in some types of small catchments.

9. Direct Calibration to Rainfall-Runoff Time
Series

[50] The recession plots shown in Figure 6 are an impor-
tant tool for inferring the shape of the storage-discharge
relationship f(S) or the catchment sensitivity function g(Q).
Nonetheless, if one is willing to take the functional form
of g(Q) as given, equations (19) and (9) can be considered

Table 2. Cross Validation: Parameter Values and Nash-Sutcliffe Efficiencies of Hourly Synthetic Hydrographs With Sensitivity Function

g(Q) Estimated From Recession Plots for Individual Yearsa

Year(s) Tested
Against

Year(s) Used to Estimate g(Q) and kE

1992 1993 1994 1995 1996 1992–1996

Severn River N-S Efficiency
1992 0.913 0.934 0.906 0.843 0.910 0.914
1993 0.892 0.906 0.885 0.832 0.879 0.889
1994 0.928 0.940 0.931 0.885 0.927 0.930
1995 0.878 0.898 0.872 0.785 0.886 0.882
1996 0.924 0.938 0.922 0.850 0.928 0.927
1992–1996 0.911 0.929 0.908 0.846 0.911 0.913

Severn River Parameter Values
c1 (recession plot) �2.381 �2.486 �2.408 �2.373 �2.502 �2.439
c2 (recession plot) 1.076 0.780 1.023 1.132 0.750 0.966
c3 (recession plot) �0.068 �0.186 �0.082 0.0* �0.165 �0.100
kE (calibrated) 0.487 0.560 0.574 0.331 0.530 0.525

Wye River N-S Efficiency
1992 0.864 0.881 0.842 0.840 0.799 0.851
1993 0.905 0.907 0.903 0.891 0.868 0.897
1994 0.881 0.888 0.913 0.863 0.858 0.875
1995 0.830 0.865 0.763 0.812 0.752 0.815
1996 0.850 0.866 0.882 0.819 0.795 0.838
1992–1996 0.870 0.885 0.863 0.850 0.820 0.859

Wye River Parameter Values
c1 (recession plot) �2.185 �2.278 �2.053 �2.200 �2.321 �2.206
c2 (recession plot) 1.135 0.880 1.219 1.086 0.998 1.103
c3 (recession plot) 0.0* �0.079 0.0* 0.0* 0.0* 0.0*
kE (calibrated) 0.366 0.409 0.614 0.286 0.309 0.346

aCoefficients c1, c2, and c3 in the empirical sensitivity function g(Q) (equation (9)) were estimated from quadratic linear regression on recession plots
similar to Figure 6 for each individual year. The coefficient c2 is one less than the slope of the log-log plots in Figure 6, owing to the factor of Q in the
denominator of equation (9). Where the quadratic parameter c3 was not statistically significant (p > 0.1), it was set equal to zero (indicated in the table as
0.0*), and ordinary linear regression was used to estimate c1 and c2. The evapotranspiration scaling factor kE was fitted by maximizing the goodness of fit
(minimizing the sum of squared deviations) between the synthetic and observed hydrographs on logarithmic axes. Parameters c1, c2, c3, and kE were
estimated for years corresponding to table columns, and model efficiencies were then calculated for years corresponding to table rows. Off-diagonal
efficiencies (representing nontrivial cross validation) are quantitatively similar to on-diagonal efficiencies shown in bold (representing goodness of fit with
the same time series that was used to estimate the parameters).
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as a simple four-parameter rainfall-runoff model that can
be directly calibrated to time series of precipitation, evapo-
transpiration, and discharge. To test the utility of this
approach, I jointly calibrated the three coefficients c1, c2,
and c3 in equation (9), along with the evapotranspiration
scaling factor kE, by minimizing the sum of squared devia-
tions between the predicted and observed stream discharge
on logarithmic axes. I calibrated a parameter set for each
year individually, then used each parameter set to generate
streamflow predictions for the other four years of record.
This is the same cross-validation exercise conducted in
section 8, except that here all of the parameters were deter-
mined by direct calibration against the time series of catch-
ment discharge.
[51] The results of this cross-validation exercise show

that this simple model performs almost equally well, both in
verification tests against the same years that it was calibrat-

ed with (the on-diagonal elements of Table 3) and in
nontrivial validation tests against different years (the off-
diagonal elements of Table 3). These results demonstrate
that the model is reasonably robust.
[52] A comparison of Tables 2 and 3 shows that, unsur-

prisingly, the model fits the observed streamflow somewhat
better when all four parameters are calibrated (Table 3) than
when just one parameter (kE) is fitted to the streamflow time
series (Table 2). What is perhaps surprising, however, is that
the values of all four parameters in Table 3 are consistent
across the different years of calibration. In many hydrolog-
ical models, the parameters introduce more degrees of
freedom than the data can adequately constrain, with the
result that different combinations of parameters often give
equally good fits to the calibration data (the equifinality
problem [Beven and Binley, 1992]), and thus the parameter
values are often sensitive to the idiosyncrasies of the

Figure 11. (a) Fitted curves from recession plots and (b) their corresponding hydrological sensitivity
functions and (c) storage-discharge relationships for 5 individual years (1992–1996) at Severn and Wye
rivers (black and gray curves, respectively). Solid curves in Figures 11b and 11c indicate ranges of Q over
which recession plots in Figure 11a were fitted (corresponding to black dots in Figure 6); dotted lines
indicate extrapolations to annual average high and low flows. (d, e, f) Corresponding relationships for
parameter values estimated by direct calibration to streamflow time series (see section 9).
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calibration data. The values shown in Table 3 indicate that
this is not the case, suggesting that the model is not
overparameterized.
[53] The parameter values obtained by direct calibration

(Table 3) are broadly consistent with those obtained from
the recession plots (Table 2). Both sets of parameters
indicate that the Wye catchment has higher g(Q) values
and thus is more sensitive to changes in storage than the
Severn (Figure 11). Both sets of parameters also indicate
that g(Q) is more strongly curved in the Severn than the
Wye, implying a somewhat shallower storage-discharge
relationship f(S). However, compared to the coefficients
obtained from the recession plots, the parameter values
obtained by time series calibration imply greater downward
curvature (consistently more negative values of c3) in the
sensitivity function g(Q) (compare Figures 11b and 11e).
This in turn implies that the lower range of the storage-
discharge relationship f(S) is flatter (compare Figures 11c
and 11f), with the result that long-term streamflow recession
will be slower under these parameter values.

10. Catchment Characterization: Estimating
Catchment Dynamic Storage

[54] Catchments can be usefully characterized by their
dynamic storage, that is, their variation in storage between
dry and wet periods [e.g., Kirby et al., 1991; Uchida et al.,
2006; Spence, 2007]. The size of a catchment’s dynamic

storage provides important insight into both vulnerability to
flooding and sustainability of low flows. In principle, it
should be straightforward to estimate dynamic storage by
taking a running integral of the catchment mass balance
(equation (1)). In practice, however, this integral will
normally be subject to large errors, as small measurement
biases and uncertainties in P, Q, and E accumulate through
time.
[55] If the catchment is characterized by a robust storage-

discharge relationship, one can straightforwardly estimate
the dynamic storage as the difference between two storage
levels Smax and Smin corresponding to any two discharge
rates Qmax and Qmin. The choice of Qmax and Qmin will
depend on the time interval over which the dynamic storage
is to be assessed. Here I estimate the dynamic storage on an
annual time scale by using the averages of annual maximum
and minimum flows; these are 0.023 and 5.81 mm/h at the
Severn, and 0.016 and 6.54 mm/h at the Wye. One can then
find the dynamic storage between these discharge values,
either by inverting the storage-discharge relationship f(S), or
by integrating the reciprocal of the hydrologic sensitivity
function g(Q),

Smax � Smin ¼ f �1 Qmaxð Þ � f �1 Qminð Þ ¼
Z Qmax

Qmin

dS

dQ
dQ

¼
Z Qmax

Qmin

1

g Qð Þ dQ: ð20Þ

Table 3. Cross Validation: Parameter Values and Nash-Sutcliffe Efficiencies of Hourly Synthetic Hydrographs With Sensitivity Function

g(Q) Estimated by Calibration to Time Seriesa

Year(s) Tested
Against

Year(s) Used to Estimate g(Q) and kE

1992 1993 1994 1995 1996 1992–1996

Severn River N-S Efficiency
1992 0.951 0.946 0.947 0.937 0.936 0.947
1993 0.929 0.931 0.928 0.913 0.910 0.924
1994 0.948 0.948 0.950 0.944 0.943 0.949
1995 0.887 0.880 0.894 0.902 0.902 0.900
1996 0.923 0.915 0.931 0.942 0.942 0.937
1992–1996 0.930 0.926 0.932 0.931 0.930 0.934

Severn River Parameter Values
c1 (calibrated) �2.225 �2.168 �2.234 �2.120 �2.212 �2.197
c2 (calibrated) 0.983 0.934 0.956 0.999 0.845 1.005
c3 (calibrated) �0.207 �0.247 �0.201 �0.166 �0.207 �0.174
kE (calibrated) 0.604 0.683 0.654 0.584 0.578 0.610

Wye River N-S Efficiency
1992 0.948 0.946 0.938 0.938 0.936 0.945
1993 0.942 0.944 0.941 0.941 0.940 0.943
1994 0.935 0.936 0.940 0.933 0.939 0.938
1995 0.924 0.932 0.920 0.935 0.918 0.931
1996 0.928 0.931 0.939 0.928 0.940 0.936
1992–1996 0.937 0.940 0.938 0.938 0.937 0.941

Wye River Parameter Values
c1 (calibrated) �2.019 �1.926 �1.901 �1.890 �2.074 �1.966
c2 (calibrated) 1.024 1.071 1.177 1.027 1.021 1.068
c3 (calibrated) �0.159 �0.136 �0.098 �0.138 �0.125 �0.128
kE (calibrated) 0.710 0.676 0.766 0.643 0.767 0.708

aCoefficients c1, c2, and c3 in the empirical sensitivity function g(Q) (equation (9)), along with the evapotranspiration scaling factor kE, were jointly
calibrated by maximizing the goodness of fit (minimizing the sum of squared deviations) between the synthetic and observed hydrographs on logarithmic
axes. Parameters c1, c2, c3, and kE were estimated for years corresponding to table columns, and model efficiencies were then calculated for years
corresponding to table rows. Off-diagonal efficiencies (representing nontrivial cross validation) are quantitatively similar to on-diagonal efficiencies shown
in bold (representing calibration goodness of fit), and parameter values are broadly consistent for each site across all years, suggesting that the model is not
overfitted to the calibration data sets.
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As Figure 12 shows, this procedure yields an annual
dynamic storage of approximately 98 mm at the Severn and
62 mm at the Wye, if the parameters of g(Q) are estimated
from the recession plots (Figure 6). If the parameter values
are estimated by direct calibration to the streamflow time
series as in section 9 above, the annual dynamic storage
estimates are somewhat greater (124 mm at the Severn and
107 mm at the Wye), because the inferred storage-discharge
relationship is somewhat flatter.
[56] These estimates of dynamic storage roughly agree

with estimates from field measurements made at Plynlimon
during the 1970s and 1980s. Annual ranges of soil moisture,
as measured by neutron probe methods, averaged 58 ±
30 mm (mean ± standard deviation) over the 8 years from
1974 through 1981; over the same time period, annual
changes in geological storage, estimated by a running mass
balance, averaged 70 ± 28 mm (data extracted from Kirby et
al. [1991, Figure 23, p. 55]). These field measurements
argue for the general plausibility of the dynamic storage
estimates derived above, but close quantitative agreement
should not be expected, because the neutron probe measure-
ments may not be representative of the whole catchment

[Kirby et al., 1991], and running mass balances are vulner-
able to accumulating errors, as described above.
[57] Over longer spans of time, wider ranges of climatic

conditions may be encountered, leading to correspondingly
wider ranges of storage levels and streamflows than would
be encountered for any given year. For example, over the
27-year record from 1974 through 2000, flows at the Severn
varied from 0.008 to 11.3 mm/h and flows at the Wye varied
from 0.008 to 9.3 mm/h. Using these discharge ranges,
equation (20) yields dynamic storage estimates of approx-
imately 190 mm at the Severn and 95 mm at the Wye,
roughly 1.5–2 times the range in storage that was calculated
for an average year.
[58] Equation (20) can also be used to account for

changes in catchment storage when estimating evapotrans-
piration by mass balance methods. In such applications
Qmax and Qmin would be replaced by the discharges at the
beginning and end of the interval over which cumulative
precipitation and discharge have been measured, and for
which cumulative evapotranspiration is to be estimated.
[59] The dynamic storage, as estimated here, will be less

than the total storage because catchments can retain signif-
icant volumes of residual water, even under drought con-
ditions. If this residual storage does not have a measurable
effect on streamflow, it cannot be estimated from hydro-
metric methods like those outlined here, but can only be
estimated from conservative chemical or isotopic tracers.
The strong damping of tracer fluctuations observed in
streamflow relative to precipitation at Plynlimon implies
either large volumes of residual storage or strong dispersive
mixing in the subsurface [Neal and Rosier, 1990; Kirchner
et al., 2000, 2001].

11. Catchment Characterization: Estimating
Sensitivity to Antecedent Moisture

[60] Hydrologists have long recognized that the anteced-
ent moisture status of a catchment has a strong effect on its
storm runoff response. Antecedent moisture has been a
major challenge for hydrological prediction, for two rea-
sons: (1) it has been difficult to accurately estimate the
moisture status of a catchment through time, by either
measurement or modeling, and (2) it has been difficult to
quantify the functional relationship between this antecedent
moisture and storm runoff.
[61] In catchments where discharge is a function of

storage, the approach outlined above directly solves both
of these problems. If discharge is a function of storage, then
the catchment’s antecedent moisture (i.e., storage) will be
implicitly measured by stream discharge, and the catch-
ment’s response to a unit increase in storage will be directly
quantified by g(Q). The hydrologic sensitivity function g(Q)
= dQ/dS directly expresses the effects of antecedent mois-
ture, by quantifying the change in discharge (dQ) that
accompanies a given change in storage (dS), at a given
level of storage and its accompanying discharge (Q).
[62] Because both discharge and g(Q) will change as a

storm progresses, accurately estimating storm runoff will
require integrating equation (18) or equation (19) through
time. Figure 13 shows simulated hydrographs for a hypo-
thetical 2-h, 20 mm/h storm, indicated by the gray shaded
region in Figures 13a and 13c. Each trace in the ‘‘fan’’ of
hydrographs corresponds to a different level of antecedent

Figure 12. Dynamic catchment storage, estimated as the
difference between storage levels corresponding to max-
imum and minimum discharges. Here the means of annual
maximum and minimum flows are used and yield dynamic
storage of approximately (a) 98 mm at the Severn and
(b) 62 mm at the Wye. Solid black curves show storage-
discharge relationships estimated from recession plots
(Figure 6). Storage measures are relative rather than
absolute; axes here show storage relative to storage at mean
discharge.
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moisture, and thus a different streamflow at the onset of the
storm. The peak discharge varies systematically with the
preevent discharge, and with the duration and intensity of
the storm, as shown in Figures 13b and 13d. The dotted
and solid curves in Figures 13b and 13d show results for
storms with total volumes of 20 mm and 40 mm, respec-
tively; the gray and black curves indicate rainfall intensi-
ties of 10 mm/h and 20 mm/h, respectively. Lookup tables
or nomograph plots like those shown in Figure 13 could be
used as an operational guide to estimating peak storm
discharge. In this regard, one should recognize that the
recession plots used to estimate g(Q) extend only to
discharges of roughly 1–1.5 mm/h, and the higher peak
flows in Figure 13 involve substantial extrapolation beyond
this range. However, the synthetic hydrographs shown in
Figure 9 indicate that equation (19) can simulate stormflows
reasonably accurately, well beyond the range of the recession
plots. Thus Figures 13b and 13d represent a proof-of-concept
demonstration showing that peak storm discharge can be
straightforwardly estimated from the sensitivity function
g(Q), using preevent discharge as an implicit measure of
antecedent moisture.

12. Catchment Characterization: Estimating
Characteristic Recession Time ‘‘Constants’’

[63] Catchment recession behavior is often described by a
characteristic time constant, the e-folding time of the
exponential decay of discharge during recession. Conven-
tional recession theory shows that if discharge is a linear

function of storage (Q = kS), under recession conditions
(P � 0, E � 0) discharge will decline exponentially as a
function of time: Q = Q0e

�kt = Q0e
�t/t. The rate of the

exponential decay can be measured by the ‘‘recession
constant’’ k, which has dimensions of 1/time, or more
intuitively by its reciprocal, the ‘‘recession time constant’’
t, which has dimensions of time. Graphically, k is the
slope of the recession hydrograph on log linear axes, and
t is its reciprocal. In the more general case where
discharge is a nonlinear function of storage, a log linear
plot of the recession hydrograph will no longer be a
straight line, and the ‘‘constants’’ k and t will no longer
be constant, but instead will vary as the catchment drains.
Nonetheless, the concept of characteristic recession time
remains useful for describing how rapidly streamflow
declines during recession.
[64] From equation (19), we can see directly that the log

linear slope of the recession hydrograph is simply

d ln Qð Þð Þ
dt

¼ g Qð Þ P � E

Q
� 1

	 
����
P�0;E�0

� �g Qð Þ; ð21Þ

and thus the recession constant k will be equal to g(Q) and
the characteristic recession time constant t will be equal to
1/g(Q). Obviously neither of these ‘‘constants’’ will be
constant unless g(Q) is a constant (as it would be if the
storage-discharge relationship were linear). Instead, as
Figure 14 shows, the characteristic recession time ‘‘con-
stant’’ varies by roughly 3 orders of magnitude within the

Figure 13. (a, c) Simulated storm hydrographs for a 2-h, 20 mm/h storm under different levels of
antecedent moisture and therefore different preevent discharge rates and (b, d) relationship between peak
discharge and preevent discharge for storms of different durations and intensities. Hydrographs were
simulated by fourth-order Runge-Kutta integration of equation (19). Gray shaded region in Figures 13a
and 13b indicates assumed precipitation input.
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annual range of flows at both the Severn and Wye, from
hours at high flows, to thousands of hours at low flows.
Even at low flows, the recession time ‘‘constant’’ t gives no
indication of actually becoming constant.
[65] The sensitivity to antecedent moisture described in

Figure 13 and the time-varying recession ‘‘constants’’
documented in Figure 14 are two interrelated consequences
of the strong nonlinearity in the storage-discharge relation-
ships at Plynlimon. This nonlinearity is inconsistent with
many time series methods commonly used in hydrology,
such as unit hydrographs and related transfer function
methods. Such methods assume that streamflow is a lagged,
linear additive function of precipitation inputs, or equiva-
lently that streamflow responses to precipitation inputs are
independent of antecedent moisture. These assumptions will
not be met in catchments that are characterized by a
nonlinear relationship between discharge and storage (as
indicated, for example, by a slope that differs from 1 in
recession plots like Figure 6). Hydrologists have long
recognized that catchments’ hydrologic response is often
nonlinear, [e.g., Linsley et al., 1982; Tallaksen, 1995;
Wittenberg, 1999; Brutsaert, 2005], calling into question
the time series methods and conceptual hydrological models
that are based on this premise.

13. Doing Hydrology Backward: Estimating
Catchment-Averaged Precipitation Rates From
Streamflow Fluctuations

[66] The analysis presented above has thus far focused on
the conventional problem of hydrological prediction, name-
ly constructing a synthetic streamflow hydrograph from
specified precipitation and evapotranspiration time series.
As shown above, reasonable results can be obtained by
representing the catchment as a simple first-order nonlinear
dynamical system (equation (18)), characterized by the
sensitivity function g(Q). The marked simplicity of this
system also makes it potentially useful for an entirely
different class of questions. The system is simple enough
that it is invertible; therefore, it can be used to infer
temporal patterns of precipitation and evapotranspiration
at small-catchment scale, using measured streamflow fluc-

tuations as input. Rearranging the terms of equation (18),
one directly obtains

P � E ¼ dS

dt
þ Q ¼ dQ=dt

dQ=dS
þ Q ¼ dQ=dt

g Qð Þ þ Q: ð22Þ

The entire right-hand side of equation (22) can be calculated
directly from the streamflow time series if the function g(Q)
is known. As outlined above, g(Q) can be estimated directly
from the streamflow time series, without measurements of
either P or E; one needs only to identify periods when P and
E are both small compared to discharge, but their exact
values are unimportant. Therefore equation (22) can be used
to calculate a time series of (P � E) directly from the
streamflow time series, independent of measurements of P
or E.
[67] How is this possible? Inferring rainfall patterns from

streamflow fluctuations has typically been considered in-
feasible, because of the problem of accounting for changes
in catchment storage. However, if discharge is a function of
storage, then changes in discharge reflect changes in stor-
age; they are related to one another through g(Q), the local
gradient of the storage-discharge relationship. Equation (22)
is just the conservation of mass equation, in which the rate
of change of storage has been reexpressed as the rate of
change of discharge, divided by the sensitivity of discharge
to changes in storage, g(Q). As long as one knows the
sensitivity of discharge to changes in storage, one knows
how much storage must change to produce a particular
measured change in discharge.
[68] Implementing equation (22) in practice will require

attention to several details. As described in section 7, there
is a time lag between changes in discharge from the
hillslope and changes in streamflow at the weir; at Plynli-
mon, these lags are approximately 1 h on average. Because
dQ/dt and g(Q) must be estimated from streamflow at
discrete points in time, one must choose those points
carefully in order to give the right time shift between
precipitation and streamflow. Also, because discharge can
change rapidly and g(Q) can be a steep function of Q, it is
important to average g(Q) over the discharge measurements
used to estimate dQ/dt. Otherwise, if (for example) dis-
charge rises substantially from a very small initial value, but
only the initial value of Q is used in the denominator of
equation (22), g(Q) will be too small to adequately represent
catchment sensitivity over the time interval, leading to
unrealistically large inferred changes in storage and inferred
precipitation rates. These considerations lead to the follow-
ing formula for inferring (P � E):

Pt � Et �
Qtþ‘þ1 � Qtþ‘�1ð Þ=2

g Qtþ‘þ1ð Þ þ g Qtþ‘�1ð Þ½ �=2þ Qtþ‘þ1 þ Qtþ‘�1ð Þ=2;

ð23Þ

where ‘ is the travel time lag for changes in discharge to
reach the weir.
[69] Unfortunately, the left-hand side of equation (22)

contains both P and E. Ideally one would like to be able to
isolate P alone. This cannot be done exactly, but it can be
approximated using the following argument. Whenever it is
raining at humid catchments like Plynlimon, relative hu-
midity should be high and evapotranspiration rates should

Figure 14. Characteristic time ‘‘constant’’ of recession, as
a function of discharge, for Severn and Wye rivers. Solid
curves indicate ranges of Q over which g(Q) was fitted to
data in recession plots (Figure 6); dotted curves indicate
extrapolations to annual average high and low flows.
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be correspondingly low. Thus to a first approximation,
whenever P � E is greater than zero, one can assume that
P � E � P. Thus we can estimate rainfall rates as

Pt � max 0;
Qtþ‘þ1 � Qtþ‘�1ð Þ=2

g Qtþ‘þ1ð Þ þ g Qtþ‘�1ð Þ½ �=2þ Qtþ‘þ1 þ Qtþ‘�1ð Þ=2
	 


:

ð24Þ

Why would one want to be able to infer precipitation rates
from streamflow fluctuations? Precipitation rates vary in
space and time, and conventional rain gauges are much
smaller than the catchments they are used to represent. For
example, the Plynlimon catchments are of order 10 km2 in
area, whereas each of the rain gauges used to measure
precipitation rates at Plynlimon are only 0.00000003 km2 in
area, more than 8 orders of magnitude smaller. Thus rainfall
rates measured at any individual rain gauge, or over any

sparse network of rain gauges, may not accurately represent
precipitation inputs to the catchment as a whole. By
contrast, equations (22)– (24) allow one to estimate
precipitation rates at the scale of the landscape rather than
the scale of the rain gauge.
[70] Figure 15 illustrates the use of equation (24) to

estimate precipitation patterns. As Figure 15 shows,
equation (24) estimates the timing, magnitude, and duration
of precipitation events at Plynlimon reasonably well. This is
not just a case of precipitation inputs equaling stream outputs
when the catchment is thoroughly wet; instead, as Figure 15
shows, the inferred rainfall rates are realistic even when
streamflow is a small fraction of precipitation. Inferred
rainfall rates can be many times higher than streamflow rates
because when discharge is low, discharge is relatively insen-
sitive to changes in storage (that is, g(Q) is small), and
therefore a given increase in discharge implies relatively
large changes in storage (and thus relatively high rainfall

Figure 15. Hourly measured streamflow (gray curve and right axis) and rainfall rates inferred from
streamflow fluctuations (solid black curves and left axis) using equation (24), compared with measured
rainfall (gray shaded regions and left axis) for Severn and Wye rivers during 20-day periods in (a, b)
December 1993 and (c, d) March 1994. Measured rainfall is the average of two automated weather
stations in each catchment. Streamflow and rainfall axes are set to the same scale so that they can be
compared but are offset for clarity. Even when rainfall events produce only a small streamflow response,
streamflow fluctuations yield accurate estimates of rainfall timing and magnitude.
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rates). Note also that in general, peaks in both inferred and
observed rainfall rates correspond to the times of the most
rapid increase in streamflow, reflecting the 90� phase lag
between precipitation and streamflow that is intrinsic to the
dynamical system formed by equations (1) and (2).
[71] Figure 16 shows precipitation rates inferred from

streamflow in the Wye River for an entire year (in this case
1994; other years are qualitatively similar), along with
precipitation rates measured at the two automated weather
stations in the Wye catchment, Cefn Brwyn and Eisteddfa
Gurig (circles numbered 3 and 4 in the location map in
Figure 1). As Figure 16 shows, rainfall rates inferred from
discharge are similar to rainfall rates measured in the two
rain gauges. The inferred rainfall rates generally reflect the

observed timing, magnitude, and duration of rainfall events,
even during relatively dry periods in the summer, when
streamflow is low for weeks at a time.
[72] The inferred rainfall rates do not exactly match either

rain gauge, but neither do the two rain gauges exactly match
each other. This observation suggests that the agreement
between the two rain gauges could be used as a benchmark
for assessing the agreement between the measured and
inferred rainfall rates. Table 4 shows the correlation between
the measured rainfall rate (i.e., the mean of the two rain
gauge records) and the inferred rainfall rate in each catch-
ment, averaged over time periods ranging from 1 h to 1 day.
As the averaging period becomes longer, the correlation
between inferred and measured rainfall rates becomes

Figure 16. (a) Six-hour average Wye River streamflow and (b) precipitation rates inferred from
streamflow, compared to 6-h average precipitation rates measured by automated weather stations at
(c) Cefn Brwyn and (d) Eisteddfa Gurig, located near the bottom and top of the Wye catchment,
respectively. Data for 1994 are shown; other years are similar.

Table 4. Correlations Between Observed Precipitation Rates and Those Inferred From Streamflow

Fluctuations Compared With Correlations Between Precipitation Rates Observed at the Two Rain Gauges in

Each Catchmenta

Averaging
Period

Severn River Wye River

P Inferred From
Streamflow

Versus Average
of Gauges

Two Rain Gauges:
Carreg Wen Versus

Tanllwyth

P Inferred From
Streamflow

Versus Average
of Gauges

Two Rain Gauges:
Cefn Brwyn Versus
Eisteddfa Gurig

1 h r = 0.811 r = 0.787 r = 0.879 r = 0.877
3 h 0.891 0.884 0.942 0.938
6 h 0.920 0.913 0.953 0.956
12 h 0.943 0.930 0.964 0.967
24 h 0.955 0.938 0.970 0.973

aCorrelations with rates inferred from streamflow fluctuation are shown in bold.
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stronger, because small discrepancies in timing become less
consequential. As a benchmark for comparison, Table 4 also
shows the correlation between the precipitation rates mea-
sured at the two rain gauges in each catchment. In general,
the correlations between the measured and inferred rainfall
rates are similar to the correlations between the two rain
gauges. In other words, the inferred rainfall rates agree with
the rain gauges roughly as well as the two rain gauges agree
with each other.
[73] The comparison between inferred and measured

precipitation rates is a strong test of the underlying theory.
Equations (22)–(24) are not calibrated in any way to the
precipitation data that they are tested against, because the
sensitivity function g(Q) is estimated from the streamflow
time series alone. Thus Figures 15 and 16 and Table 4 are a
completely independent test of the theory. Furthermore, in
an information-theoretic sense, precipitation is a more
information-rich time series than streamflow, which is
smoother and thus more redundant with itself through time.
Therefore the precipitation time series provides a more
richly detailed set of observations for the theory to be tested
against. The history of hydrology shows that many different
rainfall-runoff models can successfully take an information-
rich precipitation time series and smooth it out to make a
realistic-looking, information-poor streamflow time series.
It is less obvious that this process should be reversible, such
that subtle fluctuations in the streamflow time series yield
realistic estimates of precipitation rates through time. It is
even less obvious that this should be possible without any
calibration to the precipitation time series, yet this is what
equations (22)–(24) do.

[74] Because precipitation at Plynlimon is relatively uni-
form in space (as indicated by the strong correlations
between the pairs of rain gauges), the size of the effective
‘‘footprint’’ of the inferred precipitation estimate is unclear;
does it encompass the entire catchment, or a more limited
area adjacent to the stream network? In either case, the
effective footprint of the precipitation estimates is orders of
magnitude larger than conventional rain gauges, and more
widely distributed across the landscape. Such spatially
integrated precipitation estimates are potentially useful for
‘‘scaling up’’ individual rain gauge records to the scale of
small catchments. Likewise, precipitation time series in-
ferred from streamflow may provide useful ‘‘ground truth’’
for radar-based precipitation estimates, which have a typical
pixel size on the same order as small catchments (but many
orders of magnitude larger than conventional rain gauges).
Precipitation estimates from streamflow may also be useful
in estimating catchment inputs that are difficult to measure
directly, such as snowmelt, canopy interception, or fog drip.
[75] Precipitation estimates derived from streamflow fluc-

tuations may also be useful in reconstructing past precipi-
tation, in cases where streamflow records are available but
precipitation records are not. To explore this possibility, I
used hourly streamflow records from 1974 through 2000 to
reconstruct hourly precipitation estimates for the two catch-
ments over those years, using equation (24). I then aggre-
gated these precipitation estimates to annual totals, and
compared them against annual precipitation totals from a
dense network of monthly read storage rain gauges in the
two catchments [Marc and Robinson, 2007]. The sensitivity
functions g(Q) for the two catchments were the same ones

Figure 17. Annual precipitation totals inferred from streamflow fluctuations (black dots) for Severn and
Wye catchments, compared to annual precipitation captured in a dense network of storage gauges [Marc
and Robinson, 2007].
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estimated earlier from the recession plots (Figure 6). As
Figure 17 shows, the inferred precipitation totals agree
almost exactly with the rain gauge measurements in the
Wye catchment. In the Severn catchment, the inferred
precipitation totals are strongly correlated with the rain
gauge measurements, but are 150–200 mm/a higher, on
average. As before, the inferred precipitation estimates are
not calibrated in any way to the rain gauge measurements.
Thus the results shown in Figure 17 provide strong support
for the underlying theory, and suggest that these methods
may be useful for inferring precipitation rates where direct
measurements are not available.

14. Doing Hydrology Backward: Inferring
Evapotranspiration Patterns From Streamflow
Fluctuations

[76] Because streamflow fluctuations quantitatively re-
flect precipitation inputs to the catchment, as shown above,
it is natural to ask whether streamflow fluctuations also
reflect evapotranspiration losses. Hydrologists have devel-
oped several strategies over the past few decades for using
dischargemeasurements during streamflow recession to infer
catchment-scale evapotranspiration rates [e.g., Tschinkel,
1963; Daniel, 1976; Brutsaert, 1982; Boronina et al.,
2005; Szilagyi et al., 2007]. In the dynamical system de-
scribed by equations (1) and (2), precipitation and evapo-
transpiration have comparable but opposite effects on
catchment storage and thus on streamflow. This raises the
possibility that streamflow fluctuations can be used to infer
temporal patterns of landscape-scale evapotranspiration as
well as precipitation. It is therefore interesting to test how

well streamflow reflects evapotranspiration rates, even at
Plynlimon, where evapotranspiration is a relatively small
fraction of the water balance (Table 1).
[77] The catchment mass balance can be rewritten to

express the rate of evapotranspiration as

E ¼ P � Q� dS

dt
¼ P � Q� dQ=dt

g Qð Þ : ð25Þ

It would appear logical to use equation (25) to estimate
evapotranspiration rates directly from measured rainfall
rates and streamflow fluctuations. In practice, however, the
uncertainty in P during rainfall events will be many times
bigger than E (which is on the order of 0.1 mm/h), making
the direct application of equation (25) impractical.
[78] Instead, the approach adopted here is to restrict the

analysis to rainless periods (defined for Plynlimon as
periods when no precipitation is recorded in any of the four
rain gauges during the previous 6 h or the following 2 h, as
in section 5 above). Under those conditions, one can assume
that P, and thus the uncertainty in P, must be small. Then the
same considerations used to derive equation (24) lead to the
following expression for inferring evapotranspiration rates
from streamflow fluctuations:

EtjP¼0¼ � dQ=dt

g Qð Þ � Q � � Qtþ‘þ1 � Qtþ‘�1ð Þ=2
g Qtþ‘þ1ð Þ þ g Qtþ‘�1ð Þ½ �=2

� Qtþ‘þ1 þ Qtþ‘�1ð Þ=2; ð26Þ

where, as in equation (23), ‘ is the travel time lag for
changes in discharge to reach the weir.

Figure 18. (a, c) Fluctuations in Severn and Wye River discharge during an extended rainless interval in
June 1992. (b, d) Evapotranspiration rates inferred from these streamflow fluctuations (black curves) and
Penman-Monteith evapotranspiration estimates calculated from automatic weather station data (gray
curves). The discharge fluctuations are extremely small; the axes of Figures 18a and 18c are enlarged by a
factor of 50 relative to Figures 18b and 18d. Dotted gray lines in Figures 18b and 18d show stream
discharge drawn to scale. Vertical bars mark midnight.
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[79] Figure 18 shows evapotranspiration rates inferred
from streamflow using equation (26) during an extended
rainless interval at Plynlimon, illustrating both the potential
and the pitfalls of this approach. Superimposed on a gradual
discharge recession, one can see fluctuations in which flow
typically declines from morning through afternoon, and

then remains constant or rises slightly during the evening
and night (Figures 18a and 18c). These fluctuations are
interpreted by equation (26) as reflecting diurnal variations
in evapotranspiration rates (black lines, Figures 18b and
18d): evapotranspiration is greatest during the middle of the

Figure 19. (a–h) Hourly mean evapotranspiration rates estimated from streamflow fluctuations (black
dots) and Penman-Monteith potential evaporation (gray dots) by season of year. Dots show means ±1
standard error for all rainless hours from 1992 through 1996. In order to minimize the effects of outliers,
averages for winter are calculated as 98% trimmed means (i.e., excluding the highest and lowest 1% of
observations). (a, b) Spring is March–May, (c, d) summer is June–August, (e, f) fall is September–
November, and (g, h) winter is December–February.
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day, leading to a decline in catchment storage and a
corresponding reduction in streamflow.
[80] However, the discharge measurements must be very

precise or else the discharge fluctuations will be obscured
by measurement noise, because the fluctuations in discharge
are tiny. In fact, to make the discharge fluctuations visible in
Figure 18, the discharge axes have been expanded by
fiftyfold relative to the evapotranspiration plots. The dis-
charge time series are shown to scale as the gray dotted lines
in Figure 18b and 18d; on that scale, the discharge fluctua-
tions are invisible. Because discharge is low, the catchment
sensitivity function g(Q) is small as well, reflecting the fact
that when the catchment is dry, discharge is relatively
insensitive to changes in storage. Thus small changes in
discharge imply large changes in storage; in equation (26),
this has the effect of amplifying the real fluctuations in
discharge, but also amplifying the measurement noise. As a
result, the inferred diurnal cycles of evapotranspiration are
noisy. Nonetheless, they roughly agree with the magnitude
and timing of the diurnal cycles in Penman-Monteith poten-
tial evaporation, shown as the gray lines in Figures 18b and
18d.
[81] Reducing the noise in the inferred evapotranspiration

rates would require measuring subtle streamflow fluctua-
tions very accurately, which the Plynlimon stream gauging
stations were not designed to do. Given the noisy data that
are available, however, one can still clarify the diurnal
patterns in evapotranspiration by averaging over many daily
cycles. Figure 19 shows the inferred evapotranspiration
rates for each hour of the day in each season, averaged
over all rainless hours from 1992 through 1996. The
corresponding cycles in Penman-Monteith potential evapo-
ration are shown in gray for comparison. As Figure 19
shows, the evapotranspiration cycles inferred from stream-
flow fluctuations are broadly consistent with the Penman-
Monteith estimates, although both the timing and amplitude
differ somewhat. It should be kept in mind that the Penman-
Monteith estimates of potential evaporation are not them-
selves a ‘‘gold standard,’’ because it is not clear how they
should be extrapolated to the scale of the landscape.
Nonetheless, both the Penman-Monteith estimates and the
inferred evapotranspiration rates reach their peak near the
middle of the day and fall to near zero at night. Predicted
and observed diurnal cycles vary similarly from one season
to the next, with the exception of the winter, when the
inferred evapotranspiration cycle is weak but appears to be
inverted from the Penman-Monteith estimates. That is, on
average there appears to be a small input of water to the
catchment near noon; this could potentially reflect melting
of frost or snow during the middle of the day.
[82] The strongest conclusion one can draw from

Figures 18 and 19 is that equation (26) provides at least
semiquantitative estimates of evapotranspiration rates.
Nonetheless, the fact that this works at all, even at Plynli-
mon where evapotranspiration rates are relatively low and
discharge fluctuations are correspondingly tiny, represents a
strong test of the dynamical systems approach developed
here. It is important to remember that the only parameters in
equation (26) are those embedded in the sensitivity function
g(Q), and that g(Q) is estimated from recession plots that
contain no information about evapotranspiration rates.
Therefore evapotranspiration estimates like those shown in

Figure 18 and 19 are not calibrated to observed evapotrans-
piration rates in any way, and thus represent a completely
independent test of the theory.
[83] Even in the most general qualitative sense, one sees

the signature of the dynamical system in temporal patterns
shown in Figure 18. One can see that in general, there is a
90� phase lag between the variations in evapotranspiration
rates and the fluctuations in streamflow. Because evapo-
transpiration depletes catchment storage, which in turn
regulates discharge to the stream, the midday peak in
evapotranspiration rates corresponds to the fastest decline
in streamflow (not the minimum streamflow, as it would if
evapotranspiration were removing water directly from the
stream). This is the same dynamical phase lag that was
noted in sections 3 and 13 between precipitation and
streamflow.
[84] Estimated evapotranspiration rates are determined by

the balance between the two terms of equation (26), which
have opposite signs during streamflow recession. Because
the sensitivity function g(Q) determines the balance be-
tween the two terms in equation (26), inaccuracies in
estimating g(Q) could have large effects on evapotranspi-
ration rates inferred from streamflow. However, even in
cases where equation (26) does not give quantitatively
accurate estimates of absolute rates, it may still be useful
in estimating relative changes in evapotranspiration rates
through time. Estimates of changes in evapotranspiration

Figure 20. Difference between annual evapotranspiration
rates in the Severn and Wye catchments, inferred from
streamflow fluctuations (black dots with standard errors), and
from mass balances (gray curve). Mass balances were
calculated from precipitation recorded in an extensive
network of monthly read storage rain gauges and from
streamflows at the Severn flume and Wye weir (data from
Marc and Robinson [2007]). Black dots are trimmed means
of hourly evapotranspiration rates (upper and lower 1% of
data excluded to minimize the effect of outliers), calculated
from streamflow fluctuations using equation (26) during
rainless periods (defined as zero rainfall recorded at all
automated weather stations from the previous 6 h through the
following 2 h; periods with fewer than two operational
weather stations were excluded). Inferred evapotranspiration
rates were averaged for each season and thenwere aggregated
to annual time scales; standard errors were calculated by first-
order, second-moment error propagation.
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rates over time may be useful for assessing the effects of
changes in climate or land use on the water cycle. For
example, concerns over the hydrologic effects of changes in
vegetation (particularly afforestation of moorland areas)
were the original motivation for long-term research at
Plynlimon. Painstaking water balance studies, based on
networks of dozens of storage-type rain gauges that were
read monthly, have shown that during the 1970s and 1980s,
transpiration rates in the forested catchment (Severn) were
somewhat higher than in the moorland catchment (Wye).
However, over time the difference in evapotranspiration
rates between the two catchments has decreased because
of both the increasing age of the forest stand and the gradual
reduction of the forested area through timber harvesting
[Robinson and Dupeyrat, 2005; Marc and Robinson, 2007].
[85] To test whether this change in evapotranspiration

rates could also be detected from streamflow fluctuations, I
applied equation (26) to the hourly discharge records from
the Severn and Wye rivers over the 26 years from 1975
through 2000. This analysis used the same g(Q) functions
used elsewhere in this paper, estimated from the recession
plots in Figure 6. As Figure 20 shows, the fluctuations in
streamflow in the two catchments indicate a gradual decline
in evapotranspiration rates in the Severn relative to the Wye
through the 1970s and 1980s, reproducing the general trend
observed in the mass balance studies at Plynlimon over the
same period (gray line, Figure 20). It bears emphasis that
the inferred evapotranspiration rates shown in Figure 20 are
not calibrated in any way to either Penman-Monteith
estimates or to catchment mass balances. Indeed, the aver-
age evapotranspiration rates inferred from streamflow fluc-
tuations in both of the catchments are low, on average,
compared to either Penman-Monteith or mass balance
estimates. This could arise because equation (26) omits
interception losses, which are included in evapotranspira-
tion rates inferred from catchment mass balances. It could
also arise if g(Q) is somewhat too high at low flows, leading
to a persistent bias in the relative sizes of the two terms of
equation (26). Nonetheless, equation (26) reproduces the
difference in evapotranspiration rates between the two
catchments, and the trend in that difference through time
(Figure 20), suggesting that this approach may be useful for
detecting how landscape-scale evapotranspiration rates re-
spond to changes in vegetation or climate.

15. Discussion

15.1. Comparison With Previous Analyses

[86] In the long history of recession analysis in hydrolo-
gy, there have been many attempts to relate the recession
behavior of streams to a catchment-scale drainage function;
see reviews by Hall [1968], Tallaksen [1995], and Smakhtin
[2001], and references therein, as well as more recent work
by Lamb and Beven [1997], Wittenberg and Sivapalan
[1999], Wittenberg [1999, 2003], Szilagyi et al. [2007],
and Rupp and Woods [2008]. The approach presented here
differs from each of these previous efforts in one or more of
the following four ways. First, in the present approach the
storage-discharge relationship is expressed in its implicit
differential form, the sensitivity function g(Q). This is
advantageous because g(Q) can be estimated directly from
recession plots such as Figure 6, and because it allows the

dynamical system to be expressed as a single first-order
differential equation. This equation is invertible, allowing
one to estimate precipitation or evapotranspiration from the
streamflow time series, as well as to predict the hydrograph
from precipitation and evapotranspiration time series.
[87] Second, the present approach does not specify the

form of the relationship between storage and discharge, or
the corresponding sensitivity function g(Q), instead allow-
ing it to be determined directly from streamflow data. This
makes the analysis more general and portable than one that
assumes that the storage-discharge relationship must have a
particular functional form. In this respect the approach is a
not a ‘‘black box’’ model, but rather a ‘‘gray box’’ systems
analysis tool (in the sense of Kirchner [2006]) because it
uses the catchment’s behavior to reveal what its governing
equations are. Because the sensitivity function is determined
directly from streamflow data and encapsulates the drainage
behavior of the catchment in concise form, it may also be a
useful tool for catchment characterization.
[88] Third, the present approach attempts, as much as

possible, to take account of the uncertainties and confound-
ing factors that typically affect catchment data. As Tallaksen
[1995] points out, many recession analyses (but see Lamb
and Beven [1997] for an exception) pay too little attention to
the confounding effects of evapotranspiration, even though
its potential to significantly steepen recession curves has
been known for decades [e.g., Federer, 1973]. The reces-
sion plots used to estimate g(Q), by contrast, do not require
continuous recession curves, so one can filter out data that
are significantly affected by evapotranspiration. Similarly,
the bounding lines that are typically fitted to recession plots
of the Brutsaert-Nieber type [Brutsaert and Nieber, 1977]
are susceptible to biases and artifacts [Rupp and Selker,
2006a], which the curve-fitting procedure in Figure 6 is
designed to avoid.
[89] Fourth, the present approach makes no distinction

between base flow and quick flow. Instead, it treats catch-
ment drainage, from base flow to peak stormflow and back
again, as a single continuum of hydrological behavior. This
eliminates the need to separate the hydrograph into different
components, and makes the analysis simple, general and
portable.

15.2. Model Simplicity and Real-World Complexity

[90] The analysis presented here is based on a very simple
model structure, but the flow paths and processes control-
ling runoff in real-world catchments are complex and
spatially heterogeneous. Decades of field observations tes-
tify to the complexity of Plynlimon’s flow systems [e.g.,
Neal, 2004; Shand et al., 2005]. For example, abundant
ephemeral springs and soil pipes at Plynlimon indicate a
spatially heterogeneous and temporally dynamic flow sys-
tem in the subsurface [e.g., Sklash et al., 1996]. Borehole
measurements on a hillslope in the Severn catchment have
also identified multiple subsurface flow paths and complex
interactions between them, with stormflows creating
downwelling and upwelling hydraulic gradients in adjacent
borehole nests separated by only a few meters [Haria and
Shand, 2004, 2006]. Thus the Plynlimon catchments are
characterized by both spatial complexity and process het-
erogeneity. Yet at the scale of several square kilometers,
these complexities and heterogeneities aggregate to a simple
(albeit nonlinear) catchment-scale storage-discharge rela-
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tionship. The fact that such a simple approach can capture
the behavior of such a complex real-world system is a
hopeful sign for its more general utility.
[91] The key to making such a simple approach workable

is that it infers the form of the governing equations from the
behavior of the system. In earlier exploratory work, for
example, I tried modeling rainfall-runoff relationships in the
Severn and Wye catchments with both linear and exponen-
tial reservoir models of various degrees of complexity, but
they all exhibited obvious deviations from the data no
matter what parameters were chosen. The failure of those
models illustrates how the problem of model estimation in
complex systems goes beyond the problem of parameter
estimation: one needs to be fitting parameters to the right
model equations in the first place, and knowing the right
equations a priori is difficult. Indeed, a possible explanation
for the problems of parameter identifiability and equifinality
that often arise in hydrological models is that the governing
equations could be wrong (in the sense that they could be
inapplicable at the scales at which they are used), but their
deficiencies could be masked by overparameterization [e.g.,
Beven, 1989; Beven, 2006; Kirchner, 2006]. The literature
on parameter estimation in hydrology is large and growing,
but the problem of identifying appropriate governing equa-
tions deserves more attention than it has received so far.
[92] One also needs to start with the right dynamical

premises. For example, another way to ‘‘infer the form of
the governing equations from the behavior of the system’’
would be through time series deconvolution of the rainfall
and runoff signals, where the governing equation that is
revealed is the convolution kernel. Such a linear convolu-
tion approach, however, would assume that streamflow is a
superposition of time-shifted and rescaled precipitation
records, and therefore could not explain the effects of
antecedent moisture on runoff timing and magnitude. These
considerations illustrate the importance of having an appro-
priate dynamical structure, and appropriate governing equa-
tions, before using data to estimate parameter values.

15.3. Physical Interpretation of Storage-Discharge
Relationships

[93] One may object that the approach outlined here
seems far removed from a physically based model of
catchment processes. This approach is designed to capture
a central physical process in catchment hydrology (the
filling and draining of catchment storage), without being
overly prescriptive concerning the physical details regulat-
ing that process at the small scale. This can be considered an
advantage rather than a drawback, to the extent that those
physical details would be ‘‘surplus content’’ that cannot
usually be constrained by observational data. Indeed, many
‘‘physically based’’ models themselves have only a loose
connection to the underlying physics, because their govern-
ing equations typically require parameters that cannot be
measured at the relevant scales [e.g., Sherlock et al., 2000],
and cannot be adequately constrained by calibration [Beven,
1989].
[94] Nonetheless it is not difficult to devise physical

models, or perhaps more appropriately, physical rationaliza-
tions, for the storage-discharge relationships hypothesized
here. For example, Figure 21 outlines a conceptual model
that can be used to explain the storage-discharge relation-
ship in terms of flow through the saturated zone at the
hillslope scale. Porosity and saturated conductivity typically
decrease nonlinearly with depth below the surface z, as
shown schematically in Figure 21. In upland catchments,
conductivity typically decreases by orders of magnitude
over depths that are small compared to the hillslope relief,
with the result that the water table is nearly parallel with the
surface topography. In an idealized hillslope like the one
shown in Figure 21, the increment of storage dS correspond-
ing to any increment of depth dz is determined by the local
drainable porosity q(z),

dS ¼ q zð Þdz; ð27Þ

and the increment of discharge dQ over an increment of depth
dz is determined by the local conductivity k(z) and the slope
of the water tablem, which determines the hydraulic gradient,

dQ ¼ mk zð Þdz: ð28Þ

The total storage and discharge can be found by integrating
over the saturated zone, starting from the water table depth zo,

S ¼
Z1
zo

q zð Þdz; Q ¼ m

Z1
zo

k zð Þdz; ð29Þ

and from these the storage-discharge relationship can be
constructed. The sensitivity function g(Q) is, from (27) and
(28), simply the ratio between conductivity and porosity at
the water table depth z, scaled by the slope m:

g Qð Þ ¼ dQ

dS
¼ dQ=dz

dS=dz
¼ mk zð Þ

q zð Þ : ð30Þ

Thus there is a simple correspondence between the
variation in conductivity and porosity with depth, and

Figure 21. A hillslope cross section, illustrating a simple
conceptual model for catchment-scale storage-discharge
relationships. The profiles of conductivity k(z) and porosity
q(z), together with the hydraulic gradient m, control how
storage and discharge vary with changes in water table
depth (dotted line) and thus with changes in storage.
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the storage-discharge relationship Q = f(S) and the
sensitivity function g(Q).
[95] This one-dimensional model ignores many issues

that are important in real-world, three-dimensional catch-
ments. In real-world catchments, porosity and conductivity
are highly variable from point to point, and continuity
relationships (including the effects of planform convergence
and divergence) must be satisfied along each flow path,
with the result that water table depth varies across the
landscape. Thus one would not expect the sensitivity
function g(Q), as estimated from Figure 6, to agree with
the conductivity and porosity profiles at any individual
point in the catchment. Instead, the storage-discharge rela-
tionship characterizes how the catchment, as a whole,
releases stored water to runoff. In this regard, rationalizing
the sensitivity function g(Q) in terms of depth profiles in the
catchment is analogous to subsuming the heterogeneity of
the subsurface in an ‘‘effective’’ hydraulic conductivity in a
typical physically based model.
[96] This is not the only physical model that is consistent

with a functional relationship between catchment storage
and discharge. For example, the Boussinesq models of
groundwater flow [e.g., Brutsaert and Nieber, 1977] have
recently been solved for power law conductivity profiles in
both horizontal and sloping aquifers [Van de Grind et al.,
2002; Rupp and Selker, 2005, 2006b]. Similar power law
transmissivity profiles have also been invoked in TOP-
MODEL [Ambrose et al., 1996; Duan and Miller, 1997;
Iorgulescu and Musy, 1997]. Both TOPMODEL and late-
time solutions to the Boussinesq model yield recession
plots characterized by power law behavior, �dQ/dt = aQb

[Brutsaert and Nieber, 1977; Duan and Miller, 1997;
Iorgulescu and Musy, 1997; Rupp and Selker, 2006b],
similar to the behavior shown in Figure 6.
[97] However, for all such models (with the exception of

Rupp and Woods [2008]), the exponent b can only take on
values 1 � b < 2, with the upper limit of b = 2
corresponding to an exponential, rather than power law,
profile. Equations (27)–(30) represent a more generalized
framework for modeling storage-discharge behavior, be-
cause they are not constrained by particular functional
forms describing how subsurface characteristics vary with
depth. As discussed in section 6 above, cases where b > 2
(such as the Severn and Wye rivers) require a hyperbolic
relationship between discharge and storage. Such a hyper-
bolic relationship could arise on the idealized hillslope
shown in Figure 21 if, for example, porosity q and conduc-
tivity k vary as hyperbolic functions of depth below the
surface, q(z) = qo/(z/zo)

a and k(z) = ko/(z/zo)
b. Any pair of

profiles meeting the criteria 0 � a < 1 and b = (b � 1 � a)/
(b � 2) will result in a storage-discharge relationship
described by equation (17) and a recession plot described
by equation (10) for b > 2 (realism also requires that the
water table never rises into the nonphysical region where
q > 1). This is just the simplest example of a family of
density and porosity profiles that are consistent with
power law recession plots with b > 2.
[98] The fundamental structural assumption in the analy-

sis presented here is that discharge is controlled solely by
catchment storage, and that both discharge and storage can
be meaningfully averaged at the scale of the catchment. This
does not mean that every point on the landscape needs to

obey the same drainage equation, but rather that the
aggregate behavior of the catchment can be described by
such a relationship. In reality, the drainage equations regu-
lating different points on the landscape will differ, and the
distribution of storage across the landscape will depend on
the spatial arrangement of the local drainage equations (and
thus may vary also as a function of total water storage). As a
result, the storage-discharge relationship that characterizes
the catchment’s behavior may not describe any individual
point on the landscape.

15.4. Estimating and Accounting for Bypassing Flow

[99] The simplifying assumption that discharge depends
on catchment storage alone is of course an approximation,
although in some cases it may be a quantitatively adequate
one. In other cases a simple storage-discharge model can
serve as a null hypothesis that can be compared with more
structurally complex models. As an example, consider a
catchment in which a fraction of precipitation bypasses
catchment storage and is shunted directly to streamflow
(via, for example, overland flow, macropore flow, or direct
precipitation onto the wetted channel itself). In such a
catchment, discharge would be the sum of drainage from
catchment storage and bypassing flow, such that equation
(2) would become

Q ¼ f Sð Þ þ kPP; ð31Þ

where kP is the fraction of precipitation that bypasses
storage. The sensitivity function g would be derived
similarly to equation (5), with the further complication that
it would now depend on Q � kPP, the discharge that comes
from draining of storage:

dQ

dS
¼ f 0 Sð Þ ¼ f 0 f �1 Q� kPPð Þ

� �
¼ g Q� kPPð Þ: ð32Þ

Because g is estimated during times whenP= 0, its functional
form and parameter values will be identical to those
previously determined in section 5. Differentiating equation
(31) with respect to time, one directly obtains a first-order
nonlinear differential equation that, like equation (18),
describes the evolution of discharge through time, driven
by the time series of precipitation and evapotranspiration:

dQ

dt
¼ dQ

dS

dS

dt
þ kP

dP

dt
¼ g Q� kPPð Þ 
 P � E � Qð Þ þ kP

dP

dt
:

ð33Þ

One can estimate the importance of bypassing flow by
determining the value of kP that gives the best match to the
streamflow time series. Using the methods of section 7 and
determining both the bypassing constant kP and the
evapotranspiration scaling constant kE by calibration gives
best fit values of kP = 0.008 for the Severn and kP = 0.007 for
theWye, implying that less than 1% of precipitation bypasses
catchment storage and is shunted directly to runoff. Adding
this additional parameter improves the goodness of fit to the
streamflow time series by only a trivial amount: Nash-
Sutcliffe efficiencies increase from 0.913 to 0.915 at the
Severn and from 0.859 to 0.861 at the Wye. Cross validation
using the methods of section 8 yields similar results; the best
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fit values of kP are small across all individual years, ranging
from 0.006 to 0.010 at the Severn and from 0.005 to 0.016 at
the Wye. If the parameters that describe g(Q � kPP) are also
estimated by calibration, as in section 9, the best fit values of
kP are similarly small (ranging from 0.003 to 0.008 at the
Severn and from 0.009 to 0.014 at the Wye), and adding the
bypassing term alters the other parameter values by only a
few percent or less.
[100] These results imply that bypassing flow makes only

a small contribution to streamflow at Plynlimon, and that
accounting for bypassing flow improves streamflow pre-
dictions only marginally. Adding this second runoff mech-
anism, however, substantially complicates the process of
inferring precipitation patterns from the streamflow time
series. Because equation (33) depends on both precipitation
and its derivative, the simple methods of section 13 do not
apply. However, adding this runoff mechanism does not
complicate efforts to infer evapotranspiration rates from
streamflow fluctuations, because (as outlined in section 14)
those inferences are drawn when precipitation rates (and thus
also their derivatives) are zero.

15.5. Data Requirements

[101] Any analysis is only as good as the data it is based on.
It would therefore be useful to systematically assess how
biases and uncertainties in discharge and weather measure-
ments might affect the results of this approach, using syn-
thetic data. Such a detailed assessment must await a future
paper, however, as it is beyond the scope of this one.
[102] The analysis presented above has used hourly dis-

charge measurements to estimate the sensitivity function
g(Q) for the Severn and Wye rivers, excluding periods that
were likely to be affected by rainfall or evapotranspiration.
One can naturally ask whether the approach developed here
can be used with the daily discharge data that are widely
available online. At Plynlimon, hourly discharge and weather
data have been used primarily because they permit relatively
strict tests of the theory, but nothing in themathematics of this
approach fundamentally requires the use of any particular
time step. As a test, I reestimated g(Q), following the methods
of section 5, with daily average discharges for the Severn and
Wye rivers. I included only days for which precipitation and
potential evapotranspiration were less than 10% of discharge,
consistent with the criteria outlined in section 5. At Plynli-
mon, these criteria are met for only about 60 days in the
5 years of record. Nonetheless, the resulting g(Q) functions
yield predictions of (hourly) discharge, and inferences of
hourly precipitation from discharge fluctuations, that are
similar to those presented in sections 8 and 13, with Nash-
Sutcliffe efficiencies typically differing by less than 0.02
from those reported in the last column of Table 2, and
correlations differing by less than 0.02 from those reported
in the bold columns of Table 4.
[103] It is important, however, to exclude the effects of

precipitation and evapotranspiration as much as possible
from the discharge data used to estimate g(Q). To test what
could happen if this is not done, I reestimated g(Q) from the
hourly discharge data without excluding periods with high
potential evapotranspiration, excluding only periods with
recent rainfall. High evapotranspiration can be expected to
lead to steeper streamflow recessions, and thus higher
values of �dQ/dt in recession plots such as Figure 6; this
distortion will be largest at small values of Q and �dQ/dt.

As a result, the recession plots for the Severn and Wye are
less steep, and more upward curving, if periods of high
potential evapotranspiration are not excluded. The predicted
streamflow time series and inferred precipitation rates are
distorted as well, with Nash-Sutcliffe efficiencies that are
typically about 0.1 lower than those shown in Table 2, and
correlations with observed rainfall up to 0.06 lower than
those shown in Table 4. These distortions would likely be
larger at less humid catchments, where evapotranspiration is
a bigger part of the water balance.

15.6. Limitations

[104] The structural simplicity of the approach outlined
here obviously limits its generality. For example, it cannot
be expected to give reasonable results in a catchment where
Hortonian overland flow is a dominant runoff mechanism,
without the addition of a bypassing mechanism like the one
proposed above. Nonetheless, the methods outlined above
can be used to test whether bypassing flow is important, and
it is likely that there are many catchments where bypassing
flow is only a small component of runoff.
[105] In snowmelt-dominated catchments, liquid water

storage (and thus discharge) will respond to the rate of
snowmelt rather than the rate of precipitation (i.e., snowfall)
per se. Thus the ‘‘precipitation’’ rate inferred from stream-
flow fluctuations using the methods of section 13 will
represent the rate of snowmelt and liquid precipitation
reaching the ground surface. The fact that streamflow
fluctuations reflect snowmelt rather than snowfall should
perhaps be considered an advantage rather than a drawback,
because this is one of the only methods by which spatially
averaged snowmelt rates can be estimated.
[106] A bigger challenge is presented by catchments in

which runoff is controlled by interconnected subsurface
reservoirs with different storage-discharge relationships. In
some catchments, for example, streamflow rises and falls in
a daily oscillation driven by diurnal evapotranspiration
cycles [Lundquist and Cayan, 2002; Czikowsky and
Fitzjarrald, 2004]. Such behavior cannot be explained
by a single reservoir with a single storage-discharge
relationship, in which evapotranspiration losses should
produce daily reductions in streamflow and discharge,
but no rebound at night. Instead, a daily oscillation in
streamflow would seem to imply a riparian zone that is
continually recharged by drainage from upslope, with
evapotranspiration losses leading to net declines in stor-
age (and thus streamflow) during the day, and recharge
from upslope leading to net increases in storage (and thus
streamflow) at night. The challenge in any such multi-
component system is that one cannot easily infer the
properties of any individual component from the behavior
of the system as a whole (as with the simple methods
developed here).
[107] The methods outlined here also cannot be applied to

ephemeral streams, because when discharge goes to zero,
different levels of storage will correspond to the same (i.e.,
zero) discharge. Thus f(S) will be noninvertible and g(Q)
will be ill defined. This sets a practical lower limit to the
size of catchments where these methods can be applied,
since they must be large enough to support permanent
streams.
[108] It is equally clear that these methods must break

down for catchments that are too large, but it is not yet clear
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how big is too big. The catchments studied here are roughly
10 km2 in area. One can speculate that in significantly larger
catchments (say, 1000 km2 in area), the lag times required
for changes in discharge to propagate through the channel
network would be so long, and so variable with distance
from the outlet, that the methods presented here would not
work. Also, if storage-discharge relationships are spatially
heterogeneous at all scales, the methods presented here
cannot be expected to work in catchments that are much
larger than individual storm systems. In such a catchment,
the runoff response to an individual storm will depend on
the storage-discharge relationship and antecedent moisture
in whatever part of the catchment the storm lands. Thus the
apparent storage-discharge relationship, as viewed from the
catchment outlet, could vary significantly from one storm to
the next.
[109] By contrast, in catchments that are smaller than the

scale of individual storms, each storm will typically cover the
whole catchment area. For the reasons outlined earlier in this
section, one would expect the aggregation of spatial hetero-
geneity in such a catchment to be repeatable from one storm
to the next, yielding a catchment-scale storage-discharge
relationship that is stable through time. Similar results would
be obtained even in catchments that are larger than individual
storms, if the local storage-discharge relationships are spa-
tially heterogeneous on small scales, but relatively uniform,
on average, at the scale of individual storms.
[110] In large river basins, rainfall-runoff behavior is

determined more by the spatial distribution of precipitation
and the routing of flood flows through the channel network,
and less by the storage-discharge dynamics considered here.
However, the approach presented here may still be helpful
in large basins, by providing a small-catchment runoff
‘‘kernel’’ that can be aggregated through the channel net-
work. Linking this dynamical systems approach with chan-
nel routing via a geomorphic instantaneous unit hydrograph
(or similar approach) could help in understanding both the
nonlinear response and travel time delays that characterize
the hydrologic behavior of large basins.
[111] These considerations highlight the importance of

understanding how storage-discharge relationships vary
across the landscape. Much could be learned by using the
methods outlined here to measure g(Q) across nested net-
works of small gauged catchments. Work on this is currently
underway.
[112] Because g(Q) captures the integrated drainage be-

havior of catchments (at least those that are well approximat-
ed by the simple structural assumptions envisioned here), it
may provide a useful framework for catchment characteriza-
tion. Little is known yet about how consistent g(Q) is from
one catchment to the next, or how much (and how system-
atically) it varies with a catchment’s near-surface geology, its
soil characteristics, its geomorphic properties, its climatic
setting, and so forth. Tague and Grant [2004], however, have
shown that the log-log slope and intercept of recession plots for
streams in the Cascade Mountains of Oregon are correlated
with the fraction of highly conductive Plio-Pleistocene vol-
canic bedrock in their catchments. If g(Q) can be estimated
from some combination of catchment characteristics, then
it may help in solving the problem of hydrologic prediction
in ungauged basins. If, on the other hand, g(Q) cannot be
estimated reliably from catchment characteristics, it may

imply that catchments’ storage-discharge behavior depends
on catchment properties that cannot be readily measured
(such as, for example, the variation in hydraulic conductivity
with depth) and thus that the ungauged basins problem cannot
be solved. In that case, the most efficient way forward may be
to simply gauge catchments long enough to estimate their
sensitivity functions g(Q), as an implicit measure of the
hidden catchment properties that control their fundamental
hydrologic behavior.

16. Summary and Conclusions

[113] In catchments where discharge Q is a function of
storage S, the storage-discharge relationship Q = f(S) can be
combined with the conservation-of-mass equation to form a
nonlinear first-order dynamical system (equations (1) and
(2)). This dynamical system becomes particularly simple if
the storage-discharge relationship is expressed in its implicit
differential form, the hydrologic sensitivity function g(Q) =
dQ/dS (equation (5)). Both the mathematical form and the
parameters of this sensitivity function can be estimated
directly from recession plots (Figure 6) showing how the
rate of streamflow recession �dQ/dt varies with discharge
Q, under conditions where precipitation and evapotranspi-
ration rates are negligible compared to discharge.
[114] Using the sensitivity function g(Q), the relationship

between precipitation, evapotranspiration, and runoff
through time can be encapsulated in a single first-order
nonlinear ordinary differential equation (equation (18)).
This equation can be numerically integrated to straightfor-
wardly model rainfall-runoff behavior through time (Figures
9 and 10). The performance of this single-equation rainfall-
runoff model, as measured by its Nash-Sutcliffe efficiency,
is similar to models that are much more complex and much
more highly parameterized. Estimating the model parame-
ters using different years of data, whether via recession plots
or via direct parameter calibration, yields consistent param-
eter values and consistently high model performance
(Tables 2 and 3). The consistency of parameter values and
model performance across different years with different
weather conditions indicates that this approach meets a
crucial criterion of mathematical modeling: the constants
stay constant while the variables vary. Cross-validation tests
show that model performance is similar when tested against
years that were used for parameter estimation, and years that
were not (Tables 2 and 3), indicating that the model is more
than just a mathematical marionette that can only ‘‘dance’’
to the tune of its own calibration data.
[115] The sensitivity function g(Q) is a useful tool for

catchment characterization. From g(Q), one can directly
estimate a catchment’s dynamic storage (section 10), its
sensitivity to antecedent moisture (section 11), and its
recession time constants (section 12). More generally,
because g(Q) compactly summarizes how catchments store
and release water, it may provide a tool for linking hydro-
logic behavior to measurable catchment characteristics.
[116] Because the dynamical system that links precipita-

tion, evapotranspiration, runoff, and storage can be
expressed in a single ordinary differential equation, it can
also be inverted, to express the balance between precipita-
tion and evapotranspiration as a function only of discharge
and its time derivative (equation (22)). Thus one can use
streamflow fluctuations to estimate time series of spatially
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averaged precipitation and evapotranspiration. Precipitation
time series inferred from streamflow accurately reproduce
the timing, duration, and intensity of rainfall events ob-
served at Plynlimon (Figures 15 and 16), as well as long-
term variations in annual rainfall totals (Figure 17). Precip-
itation rates inferred from streamflow at the Plynlimon
catchments agree with direct rain gauge measurements
roughly as well as the two rain gauges in each catchment
agree with each other (Table 4).
[117] Streamflow fluctuations yield noisy, semiquantita-

tive estimates of evapotranspiration rates (Figure 18) be-
cause of the strong sensitivity of the evapotranspiration
estimates to small measurement errors in discharge. None-
theless, evapotranspiration rates inferred from streamflow
show diurnal cycles that resemble those in Penman-Mon-
teith estimates of potential evaporation (Figure 19), and
long-term estimates of the difference in evapotranspiration
rates between the Severn and Wye catchments generally
agree with independent estimates from mass balance studies
(Figure 20). Considered together, Figures 15–20 suggest
that streamflow fluctuations can yield useful estimates of
precipitation and evapotranspiration rates at the scale of
small catchments, particularly where direct measurements
are unavailable, unreliable, or unrepresentative at the catch-
ment scale. ‘‘Doing hydrology backward’’ also provides an
important test of the underlying theoretical framework,
because its only parameters are those embedded in g(Q),
which are derived from streamflow data alone. Thus pre-
cipitation and evapotranspiration rates inferred from stream-
flow fluctuations are not calibrated to the observed
precipitation or evapotranspiration data, making them a
particularly strong test of the underlying theory.
[118] Characterizing a catchment by a single nonlinear

storage-discharge relationship, or its implicit differential
counterpart, the sensitivity function g(Q), involves dramat-
ically simplifying (and possibly oversimplifying) the com-
plex and spatially heterogeneous processes and properties
that control water fluxes at the catchment scale. Thus the
range of applicability of the approach presented here is not
yet clear. Nonetheless, the analyses presented above dem-
onstrate that, at least for some catchments, this approach
provides a useful quantitative tool for predicting runoff from
rainfall, and also for inferring rainfall and evapotranspiration
from runoff.
[119] More broadly, however, this approach can be

viewed as a way to characterize and diagnose the function-
ing of hydrologic systems at small-catchment scale. As
shown above, it is demonstrably useful for both hydrologic
prediction and hydrologic inversion. It also provides direct
information about three important catchment characteristics:
the size of the dynamic moisture store, the sensitivity of
storm runoff to antecedent moisture, and the characteristic
time scales of catchment drainage. Perhaps more impor-
tantly from a scientific standpoint, the approach is also
falsifiable in multiple ways, because the theory is not
‘‘tuned’’ to match the data in any of the comparisons
presented above, except Table 3.
[120] Finally, the approach outlined here is also mathe-

matically straightforward, involving nothing more complex
than a single first-order nonlinear differential equation, and
is not difficult to apply in practice. The calculations can all
be done on spreadsheets, and most importantly, they are

based on widely available hydrologic data (i.e., predomi-
nantly streamflow data, with rain gauge measurements and
weather data as ancillary inputs). The approach does not
require data that are hard to get (such as, for example,
measurements of subsurface material properties or moisture
status). As an inferential tool for understanding catchment
behavior, and as a predictive tool for rainfall-runoff model-
ing, the approach outlined here performs at least as well as
other methods that are considerably more complex, and
correspondingly more difficult to apply. With its simple
mathematics and minimal data requirements, this approach
was developed specifically so that it could be readily
applied in practice, and readily extended to new field
situations. The next key task is to assess its applicability
to diverse hydrologic settings.
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