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[1] Many landscapes are composed of ridges and valleys that are uniformly spaced, even
where valley locations are not controlled by bedrock structure. Models of long-term
landscape evolution have reproduced this phenomenon, yet the process by which
uniformly spaced valleys develop is not well understood, and there is no quantitative
framework for predicting valley spacing. Here we use a numerical landscape evolution
model to investigate the development of uniform valley spacing. We find that evenly
spaced valleys arise from a competition between adjacent drainage basins for drainage
area (a proxy for water flux) and that the spacing becomes more uniform as the landscape
approaches a topographic equilibrium. Valley spacing is most sensitive to the relative rates
of advective erosion processes (such as stream incision) and diffusion-like mass
transport (such as soil creep) and less sensitive to the magnitude of a threshold that limits
the spatial extent of stream incision. Analysis of a large number of numerical solutions
reveals that valley spacing scales with a ratio of characteristic diffusion and advection
timescales that is analogous to a Péclet number. We use this result to derive expressions for
equilibrium valley spacing and drainage basin relief as a function of the rates of advective
and diffusive processes and the spatial extent of the landscape. The observed scaling
relationships also provide insight into the cause of transitions from rill-like drainage
networks to branching networks, the spatial scale of first-order drainage basins, the
contributing area at which hillslopes transition into valleys, and the narrow range
of width-to-length ratios of first-order basins.
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1. Introduction

[2] Landscapes have many self-organized features
[Hallet, 1990], which range in size from ripples and dunes
[Bagnold, 1941; Kennedy, 1969] to evenly spaced mountain
ranges [Eaton, 1982]. Some of the most basic and visually
striking scales are associated with the erosional dissection of
landscapes into ridges and valleys. To first order, the scale
of the topography in such a landscape is defined by the
spacing and depth of the valleys, or, equivalently, the width
and height of the intervening ridges. It has long been
observed that ridges and valleys within a given landscape
appear to have a characteristic size. In particular, valley
spacing is often quasiperiodic [Gilbert, 1877; Shaler, 1899;
Hack and Goodlett, 1960; Hanley, 1977; Hovius, 1996;
Talling et al., 1997; Izumi and Parker, 2000; Allen, 2005],

so that ridge-and-valley topography appears to have a
characteristic ‘‘wavelength’’ (Figures 1 and 2).
[3] Perron et al. [2008] demonstrated the existence of

characteristic ridge-valley wavelengths by analyzing two-
dimensional Fourier power spectra derived from high-
resolution topographic maps of soil-mantled landscapes,
including the landscape in Figure 2, and showing that the
spectra contained peaks corresponding to quasiperiodic
structures. By comparing the topographic spectra with those
of fractal surfaces, Perron et al. demonstrated that such
uniform valley spacing is unlikely to occur by chance in
random topography.
[4] Uniform spacing is especially apparent among first-

order drainage basins in soil-mantled landscapes
[Montgomery and Dietrich, 1992;Dietrich andMontgomery,
1998; Perron et al., 2008], but is observed to occur at scales
ranging from meter-scale field and laboratory analogs
[Schorghofer et al., 2004] to entire mountain belts [Hovius,
1996; Talling et al., 1997], and in diverse settings that
include submarine environments [Orange et al., 1994] and
beaches [Schorghofer et al., 2004]. Uniformly spaced ero-
sional valleys have even been observed on Mars (Figure 3).
Importantly, uniform valley spacing often occurs in land-
scapes where bedrock structure and tectonic patterns do not
exert a significant control on the locations of valleys, a trend
noted by Gilbert [1877] in relation to the ‘‘great regularity
and beauty’’ of badlands. This observation, along with the
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fact that topography is dynamic and subject to disturbance,
implies that the ridge-valley wavelength must emerge from
the processes that shape landforms by eroding, transporting
and depositing sediment.
[5] Like other prominent patterns in the physical scien-

ces, such as crystal lattices or instabilities that arise at fluid
interfaces, spatial periodicities in landscapes must contain
fundamental information about the material properties and

governing physics of the system that produces them. Yet our
ability to interpret this signal is limited by the lack of a well-
tested mathematical framework for predicting many of the
characteristic scales that occur in landscapes. Perusal of the
literature on long-term landscape evolution reveals several
studies in which physically based numerical models pro-
duce landscapes that appear to contain quasiperiodic ridges
and valleys [e.g, Howard, 1994a; Kooi and Beaumont,
1996; Densmore et al., 1998; Tucker and Bras, 1998], but
it is not clear how this pattern emerges as the topography
evolves, how the model equations control the valley spac-
ing, or whether the modeled spacing is consistent with that
observed in nature.
[6] A number of previous studies of the erosional devel-

opment of landscapes have proposed conceptual and quan-
titative explanations for the characteristic size of drainage
basins. One of the earliest was a suggestion by Davis
[1892], in response to observations by Gilbert [1877], that
the morphologic transition from concave-down topographic
profiles near drainage divides to concave-up profiles further
downslope corresponds to a transition from erosion domi-
nated by soil creep to erosion dominated by overland flow.
This suggestion was developed further by Gilbert [1909].
Later studies quantified the idea that a transition in process
dominance might control the extent of valley incision, and
ultimately showed that erosional features with a finite,
uniform spacing can emerge from a competition between

Figure 1. Aerial photograph of a landscape near Orland,
California, showing quasiperiodic valley spacing of roughly
100 m. Photo by J. Kirchner.

Figure 2. Shaded relief map of a portion of the Gabilan Mesa, California, at approximately 35.9�N,
120.8�W. The tributary valleys that drain into the NE-SW trending canyons show a remarkably uniform
spacing. The topographic data, with a horizontal resolution of 1 m, were collected and processed by the
National Center for Airborne Laser Mapping (NCALM, http://www.ncalm.org). The Salinas River and
U.S. Highway 101 are visible to the southwest.

F04016 PERRON ET AL.: VALLEY SPACING

2 of 21

F04016



sediment transport processes that amplify perturbations in a
topographic surface and processes that damp the perturba-
tions. Kirkby [1971] used a one-dimensional model to show
that transport laws describing creep processes generate
concave-down topographic profiles, whereas laws describ-
ing erosion by channelized flow create concave-up profiles.
He noted that these characteristic forms are independent of
initial conditions, and that the combined influence of these
processes should create profiles that are concave-down near
drainage divides and concave up near the toe of the slope.
Kirkby also emphasized the importance of two-dimensional
topographic convergence or divergence, and its effect on
water and sediment fluxes, in the evolution of drainage
basins.
[7] This latter topic was explored in considerable detail

by Smith and Bretherton [1972] in a study of the incipient
development of erosional rills. Smith and Bretherton ana-
lyzed the stability of an erodible surface under a sheet of
flowing water, and found that if the sediment flux at a given
location depends on the flux of water and the topographic
gradient, a surface with a concave-up longitudinal profile is
unstable with respect to lateral perturbations in the flow, and
will inevitably develop erosional channels. Their analysis
does not predict a finite rill spacing, because the shortest-
wavelength instabilities grow fastest, but they posited that
introducing a diffusion-like transport term, which describes
a process in which sediment flux is proportional to the
topographic gradient only, would damp the growth of short-
wavelength instabilities and select for an intermediate
wavelength. Loewenherz [1991] confirmed this in a general
sense by adding an artificial smoothing function and dem-
onstrating that intermediate wavelengths do indeed grow
fastest.
[8] Others pointed out that neither slope-dependent trans-

port nor artificial diffusion is necessary to explain finite rill

spacing. Izumi and Parker [1995] showed that the inclusion
of a free water surface (which was not a feature of the
kinematic flow approximation of Smith and Bretherton
[1972]) creates backwater effects and Reynolds stresses that
prevent the formation of an infinitely narrow, infinitely deep
flow, an effect that was anticipated, but not explored, by
Smith and Bretherton [1972] and Loewenherz [1991].
Several related studies have investigated rill formation by
free-surface flows both analytically [Loewenherz-Lawrence,
1994; Izumi and Parker, 2000] and numerically [Smith and
Merchant, 1995; Smith et al., 1997a, 1997b]. Dunne [1980]
and Dunne and Aubry [1986] noted, however, that slope-
dependent transport mechanisms such as rain splash do
influence the development of subaerial topography, and
could be a significant factor restricting the growth of
incipient, short-wavelength erosional channels, as originally
suggested by Smith and Bretherton [1972].
[9] These studies provide fundamental insight into land-

scape evolution by demonstrating that erosional features
with a characteristic size can emerge from the dynamics of
physical transport mechanisms, including interactions be-
tween advective (flux- and slope-dependent) and diffusive
(slope-dependent) processes. Yet their results cannot be used
to predict the characteristic scales that emerge through the
long-term evolution of landforms at scales of 102–104m, like
those shown in Figure 2, for three main reasons. First, to
make the problem analytically tractable, most of these
studies have considered small perturbations superimposed
on a background topography (often an inclined plane) that
does not change. In real landscapes, the erosion of valleys
with finite amplitude alters the topography, which feeds
back into the rate and spatial pattern of erosion. Second,
because most of these studies have examined the develop-
ment of incipient erosional features rather than the emer-
gence of finite amplitude landforms, the quantities of
interest, such as rill spacing, are time-dependent, as intuited
by Izumi and Parker [1995] and shown numerically by
Smith and Merchant [1995] and Smith et al. [1997b]. Third,
these studies investigated the case in which an erodible
surface is entirely submerged beneath a shallow flow, and so
their mathematical treatment of the problem is not directly
applicable to landscapes in which erosion occurs by open
channel flow. Thus, despite a considerable body of work
that has built upon the hypothesis of Davis [1892] and
Gilbert [1909], it is unclear whether a competition between
advective and diffusive processes is sufficient to explain the
scale and spacing of natural drainage basins.
[10] An alternative explanation for the characteristic size

of first-order drainage basins is that of Horton [1945], who
proposed that the extent of erosional landscape dissection is
limited by a threshold for erosion by overland flow, such as
a minimum shear stress that must be exceeded to overcome
the cohesion of the soil surface, or a minimum contributing
area required to outpace infiltration and generate surface
runoff. Horton argued that this results in a ‘‘belt of no
erosion,’’ a region lying within a ‘‘critical distance’’ of
drainage divides in which surface runoff is insufficient to
cause erosion, that defines the spatial scale at which hill-
slopes end and valleys begin. He intended for the belt of no
erosion to be taken literally, meaning that no erosion
whatsoever occurred in the absence of overland flow
transport. Although it is now understood that overland flow

Figure 3. Detail of Mars Orbiter Camera image R0502476
showing evenly spaced erosional features incised into a
debris slope at the edge of a depression near 70.7�S,
355.7�W. Image width is approximately 6.5 km. The rim of
the depression is toward the top of the image; the floor is
toward the bottom. Valleys, channels, and depositional fans
appear to have been created by repeated debris flows [Malin
and Edgett, 2000]. The convex profiles of the intervening
ridges may be a signature of slope-dependent creep driven
by cyclical deposition and sublimation of ground ice
[Perron et al., 2003]. Image courtesy of NASA/JPL/MSSS.
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is just one of several mechanisms that can act on slopes,
subsequent studies have found empirical support for the
existence of a runoff or erosion threshold that influences the
location where a stream channel begins [Montgomery and
Dietrich, 1988, 1989, 1992; Reid, 1989; Dietrich et al.,
1992, 1993; Dietrich and Dunne, 1993; Prosser and
Dietrich, 1995], and some of these studies propose that
the observed transition from hillslope to valley morphol-
ogy is controlled by the magnitude of the threshold
[Montgomery and Dietrich, 1988, 1989, 1992; Dietrich
et al., 1992]. As Dunne [1980] and Kirkby [1993] note,
the process competition of Davis [1892] and Gilbert
[1909] and the erosion threshold of Horton [1945] are
not mutually exclusive mechanisms, and both are likely to
exert a partial control on valley morphology in many
landscapes. But the relative importance of the two mech-
anisms in controlling valley spacing is unknown.
[11] Numerical models of landscape evolution have made

it possible to investigate the transient development and
equilibrium form of topography that develops under the
combined influence of hillslope and fluvial processes. First-
order drainage basins with a characteristic size do emerge in
many of these models [e.g., Ahnert, 1976, 1987; Kirkby,
1986; Willgoose et al., 1991b; Tarboton et al., 1992;
Howard, 1994a; Tucker and Bras, 1998], and a number of
studies have shown that such characteristic scales vary
systematically with the rates of the dominant erosion and
transport processes. Some of these studies have focused on
the scale at which hillslopes transition into valleys. Kirkby
[1987] used a numerical model to investigate controls on
hillslope length for a more general set of process laws than
those discussed by Smith and Bretherton [1972], including
landsliding. A widely recognized morphologic signature of
the hillslope-valley transition is the upslope contributing
area at which the topographic slope reaches its steepest
point, and then begins to grow gentler with increasing
contributing area [Tarboton et al., 1989, 1992; Willgoose
et al., 1991d, 1992; Willgoose, 1994b; Howard, 1994a].
Tarboton et al. [1992] related this characteristic area, which
is generally thought to correspond to the inflection between
a concave-down hillslope and a concave-up valley, to the
transition in landform stability discussed by Smith and
Bretherton [1972]. Several authors have shown that numer-
ical models reproduce this slope-area transition, and have
proposed expressions for the characteristic area based on the
model equations [Willgoose et al., 1991d; Howard, 1994a,
1997; Moglen et al., 1998; Tucker and Bras, 1998]. A
quantity closely related to the slope-area transition is
drainage density, defined as the total length of channels
per unit area of the landscape. Several studies have used
numerical landscape evolution models to systematically
investigate variations in drainage density in response to
different process rates and laws, including erosion thresh-
olds and the competition between advective and diffusive
processes [Willgoose et al., 1991d; Howard, 1997; Moglen
et al., 1998; Tucker and Bras, 1998].
[12] There are, however, important differences between

the characteristic scales explored by this body of previous
work and the characteristic spacing of ridges and valleys.
The slope-area transition is correlated with the spatial scale
at which first-order valleys begin, but it does not uniquely

specify their overall size or spacing. Drainage density
provides a spatially averaged measure of the concentration
of valleys, but it does not uniquely specify their spatial
arrangement. Thus, predictions of drainage density and
source area cannot directly predict valley spacing, and the
relative influence of erosion thresholds and process compe-
tition on valley spacing must be evaluated independently.
Recent studies have begun to advance toward this goal
[Simpson and Schlunegger, 2003], but there presently is no
widely accepted framework for predicting the characteristic
spacing of ridges and valleys in natural landscapes.
[13] This paper has three goals: (1) to determine how

uniform valley spacing, one of the most salient character-
istics of ridge-and-valley topography, emerges as a land-
scape evolves from an initial condition toward a
topographic equilibrium; (2) to evaluate the relative impor-
tance of the two hypothesized controls on the scale and
spacing of valleys (process competition versus erosion
threshold); and (3) to identify quantitative relationships
between first-order landscape properties, including valley
spacing, and the rates of the erosion and transport processes
that shape the landscape. We begin by presenting a numer-
ical landscape evolution model based on a widely used
equation that incorporates a competition between advective
erosion and diffusive transport, as well as an erosion
threshold. We then use dimensional analysis to derive
hypothesized scaling relationships between valley spacing
and the terms in the governing equation. Finally, we
conduct a set of numerical experiments that investigates
the proposed scaling relationships, and use the results of
these experiments to evaluate the relative importance of the
process competition and the stream incision threshold in
controlling valley spacing and relief. We conclude by
relating our scaling law to previously proposed expressions
for the characteristic area of the hillslope-valley transition.

2. Landscape Evolution Model

2.1. Governing Equation

[14] The derivation of the governing equation closely
follows that of Howard [1994a, 1997, 1999] and Tucker
and Slingerland [1996, 1997]. For a sediment-mantled
topographic surface with elevation z(x, y) measured relative
to a fixed base level, conservation of mass requires that

rs
@z

@t
þr � qs

� �
¼ rrU ; ð1Þ

where t is time, rs and rr are the bulk densities of sediment
and rock, qs is the volume flux of transportable sediment per
unit width of the land surface, and U is the rate of change of
bedrock elevation relative to base level. Equation (1)
assumes that the conversion of bedrock to soil keeps pace
with erosion, such that no bedrock outcrops occur.
[15] The total sediment flux, qs, results from fluxes

associated with overland or channelized flow of water, qc,
and mass movement of sediment, qm [Dietrich et al., 2003].
If we express the total flux as a sum of these components,
then

r � qs ¼ r � qm þr � qc : ð2Þ
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Mass movement of sediment can result from a variety of
processes, ranging from landsliding to grain-scale transport
by rain splash. In soil-mantled landscapes with moderate
topographic gradients, the dominant process is creep, which
is driven by dilational disturbance of granular sediment due
to processes such as bioturbation, frost heaving, and
wetting/drying. Creep is hypothesized to occur by slope-
normal dilation and subsequent vertical settling, with a
resultant time-averaged downslope flux that is proportional
(but opposite in sign) to the topographic gradient [Culling,
1960, 1963, 1965]:

qm ¼ �Drz : ð3Þ

The proportionality constant D has the units of a diffusivity
(L2 T�1). Numerous field studies have provided evidence
based on morphology [e.g., Nash, 1980; Hanks et al., 1984;
Rosenbloom and Anderson, 1994] and cosmogenic nuclide
mass balance [Monaghan et al., 1992; McKean et al., 1993;
Small et al., 1999] that supports the applicability of
equation (3) in a range of climatic settings [Fernandes
and Dietrich, 1997]. In steep topography, there is evidence
that qm increases nonlinearly as the topographic gradient
approaches a limiting value of order unity; however, at
gradients ]0.4, the difference between the linear model and
the nonlinear model is small [Roering et al., 1999, 2001a,
2001b, 2007]. The model presented here is intended to
simulate landscapes in which hillslope gradients are low to
moderate and slope failure is insignificant, such that
equation (3) is an adequate description of soil mass
transport rates.
[16] The effects of surface water flow include detachment

of material from the land surface and transport of this
detached material. Here we assume that the transport rate
is limited by the rate of detachment and sediment entrain-
ment rather than by the transport capacity, a condition often
referred to as ‘‘supply limited’’ [Carson and Kirkby, 1972]
or ‘‘detachment-limited’’ [Howard, 1994b; Howard et al.,
1994] incision. We further assume that most fluvial erosion
occurs during storms that produce flows capable of trans-
porting all eroded material over a distance longer than the
model domain, such that no redeposition of fluvially eroded
sediment occurs. Under these conditions, the divergence of
fluvial sediment flux is equal to the detachment rate, e
[Howard, 1994a],

r � qc ¼ e : ð4Þ

It is often assumed, following the observations of Howard
and Kerby [1983], that detachment-limited incision rates are
directly proportional to the shear stress, t, exerted by the
flow on the bed and banks of a channel, and that cohesion of
the bed material may lead to a threshold shear stress, tc, that
must be exceeded for erosion to occur. That is,

e ¼
k1 t � tcð Þ t > tc

0 t � tc

8<
: ; ð5Þ

with k1 an empirical constant that gives the time-averaged
detachment rate. The bed shear stress for steady, uniform,
open channel flow is

t ¼ rwgRS ; ð6Þ

where rw is the density of water, R is the hydraulic radius,
and S is the water surface slope. The flow velocity u is given
by the Manning equation,

u ¼ 1

N
R

2
3S

1
2 ; ð7Þ

where N is an empirical roughness factor. Continuity of the
flow requires that

Qw ¼ k2Rwu ; ð8Þ

where Qw is the volume flux of water through the channel
cross section, w is the channel width, and k2 is a form factor
that approaches one as the width-to-depth ratio of the
channel increases. Substituting equation (7) into equation (8)
and solving for R gives

R ¼ NQw

k2wS
1
2

� �3
5

: ð9Þ

To express R in terms of the topography, we assume that the
water surface slope is the same as the local topographic
slope (S = jrzj) and include the empirical relationships
[Leopold and Maddock, 1953; Knighton, 1998]

Qw ¼ k3A
a ð10Þ

and

w ¼ k4Q
b
w ; ð11Þ

where k3, k4, a and b are constants, and A is the horizontal
area of the landscape that drains to the point at which Qw

and w are measured. We assume that all flow is concentrated
into channels with widths given by equation (11). The
application of equation (11) to small contributing areas and
discharges has some support from field observation and
experiments [e.g., Parsons and Abrahams, 1992; Parsons et
al., 1994; Abrahams et al., 1994]. Combining equations (6),
(9), (10) and (11) to obtain an expression for t and
substituting into equation (5) yields

e ¼ k1 rwg
Nk1�b

3

k2k4

� �3
5

A
3
5
a 1�bð Þjrzj

7
10 � tc

" #
: ð12Þ

[17] Taken together, equations (2), (3), (4), and (12) give
an expression for the total sediment flux divergence, r � qs,
in equation (1). Solving equation (1) for the time derivative
and defining E =

rr
rs
U (such that E is a rate of change of land

surface elevation relative to base level) yields a single
equation for the time evolution of the topography:

@z

@t
¼ Dr2z� K Am rzj jn � qcð Þ þ E ; ð13Þ
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with

K ¼ k1rwrsg
Nk1�b

3

k2k4

� �3=5

;

qc ¼
k1rs
K

tc;

m ¼ 3

5
a 1� bð Þ;

n ¼ 7

10
:

The hypothesis that e is proportional to the rate of energy
expenditure of the flow, or ‘‘stream power’’ [Seidl and
Dietrich, 1992; Seidl et al., 1994], leads to an equation with
the same form as equation (13), but with n = 1 and a factor
of 5/3 increase in m. These values of n, both of which are
used in this study, should be considered approximate
inasmuch as the Manning equation is empirically derived,
though there is some theoretical support for its form [Gioia
and Bombardelli, 2002].
[18] Two points about the use of equation (13) to inves-

tigate hypothesized mechanisms for producing uniform
valley spacing deserve brief explanations. First, an assump-
tion implicit in equation (13) is that both diffusion-like
transport and channelized fluvial erosion may occur
throughout the landscape. This common assumption [e.g.,
Howard, 1994a; Willgoose, 1994b; Tucker and Bras, 1998]
is appropriate for a landscape in which channelized flow is
pervasive, but conversion of bedrock to erodible sediment
keeps pace with surface erosion, including in channels. This
condition limits the range of landscapes to which the model
applies, but permits a clearer understanding of how the
competing terms in the governing equation influence valley
spacing. Second, because the model does not explicitly
include runoff generation, we do not distinguish between
the two mechanisms that can contribute to a threshold for
fluvial incision: topographic thresholds for runoff produc-
tion [e.g., Kirkby, 1980; Dietrich et al., 1992; Dietrich and
Dunne, 1993], and mechanical strength of the land surface
[e.g., Reid, 1989; Prosser and Dietrich, 1995]. We param-
eterize these effects in terms of a single threshold that limits
the spatial extent and magnitude of fluvial incision, qc, with
the understanding that both material strength and the spatial
pattern of runoff production can influence this threshold.
[19] Equation (13) is a nonlinear advection-diffusion

equation in which the quantity being advected and diffused
is elevation. The first term on the right-hand side is a linear
diffusion term, which tends to smooth perturbations in a
topographic surface. Depending on the sign of the Laplacian
of elevation, r2z, this term can lead to either a decrease in
elevation with time (erosion) or an increase (deposition).
The second term is a nonlinear kinematic wave term that
causes differences in elevation to propagate across the
landscape in the direction of the topographic gradient
vector, rz [Luke, 1972, 1974, 1976]. Because it includes
A, the upslope contributing area, this term tends to amplify
perturbations in the topography. The kinematic wave term is
nonlinear because n may differ from unity, and also because
A is a function of both position and time with nonlocal

dependence: as the topography evolves, changes in A can
feed back strongly into valley incision. As indicated in
equation (5), this term can only cause erosion. The third
term is a source term that drives the evolution of the
topography: without differential uplift relative to a bound-
ary, derivatives of elevation, and therefore the other two
terms on the right-hand side of equation (13), will tend
toward zero as the topography diffuses away to form a
featureless, level plain.

2.2. Numerical Method

[20] As mentioned in section 1, analytic approaches to
systems like equation (13) [Smith and Bretherton, 1972;
Smith and Merchant, 1995; Smith et al., 1997a, 1997b;
Loewenherz, 1991; Loewenherz-Lawrence, 1994; Izumi and
Parker, 2000] have mainly focused on small perturbations
in a topographic surface, such as the development of
incipient channels, for which the governing equations can
be linearized. Here, in contrast, we are interested in the
finite amplitude ridge-and-valley topography that emerges
as a landscape evolves beyond its initial state toward an
equilibrium. The strong nonlinearities in equation (13) make
an analytic solution for the equilibrium topography intrac-
table, and so, like several previous studies [e.g., Willgoose
et al., 1991b, 1991c; Howard, 1994a; Tucker and Bras,
1998], we solve equation (13) numerically.
[21] Our numerical approach differs from many pre-

vious landscape evolution models in that it solves a
single governing equation (equation (13)) over the entire
spatial domain simultaneously, rather than separately
evaluating each individual term describing an erosion
or transport process and routing sediment explicitly
across the landscape.
2.2.1. Finite Difference Scheme
[22] We calculate finite difference solutions to

equation (13) on a rectangular grid zi,j with grid spacings
Dx and Dy and dimensions Nx 
 Ny, such that

zi;j ¼ z xi; yj
� 	

; ð14aÞ

xi ¼ iDx; ð14bÞ

yj ¼ jDy; ð14cÞ

i ¼ 0; 1; 2; . . .Nx � 1; ð14dÞ

j ¼ 0; 1; 2 . . .Ny � 1 : ð14eÞ

In discrete form, equation (13) can be written as

Dz ¼ Dt F zð Þ þ Y zð Þ½ � ; ð15Þ
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with

F zð Þ ¼ D
ziþ1;j � 2zi;j þ zi�1;j

Dx2
þ zi;jþ1 � 2zi;j þ zi;j�1

Dy2

� �
;

Y zð Þ ¼ E � wi;j

d
K Am

i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12 þ s22

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s32 þ s42

p
2

 !n

� qc

" #
;

s1 ¼
ziþ1;j � zi�1;j

2Dx
;

s2 ¼
zi;jþ1 � zi;j�1

2Dy
;

s3 ¼
ziþ1;j�1 � zi�1;jþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p ;

s4 ¼
ziþ1;jþ1 � zi�1;j�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þDy2

p :

[23] The factor wi,j/d in equation (15) (where d is the grid
spacing; in the present study, d = Dx = Dy in all cases), a
modification due to Howard [1994a], accounts for the fact
that stream channels have a finite width (equation (11)) that
is narrower than the grid spacing. Neglecting this factor
would assume implicitly that channels have a width d, and
the model solutions would then be resolution-dependent. In
this study, we assume for simplicity that k4 = 1 m and b = 0
in equation (11), noting that future studies intending to
apply this model to a specific field site will need to calibrate
the channel width function. The values of k4 and b do affect
the form of the model topography, but using typical mea-
sured values that lead to spatially variable channel width
would not qualitatively change the results presented here.
[24] The algorithm used to evaluate the drainage area

function Ai,j is of critical importance. Not all drainage area
algorithms are faithful descriptions of both convergent and
divergent flow, and thus not all algorithms are well suited to
modeling interactions between topographically convergent
valleys and topographically divergent hillslopes. The steep-
est descent or D8 algorithm [O’Callaghan and Mark, 1984]
routes flow to only one of a point’s eight neighboring
points, and is therefore incapable of producing divergent
flow. This method is well suited to modeling channelized
flow along a valley axis, but tends to artificially enhance
fluvial incision rates on divergent hillslopes by producing
linear flow accumulation paths where flow should actually
diverge [Tarboton, 1997]. Yet there are also situations in
which steepest-descent flow routing inhibits convergent
flow, such as the incision of incipient valleys in a nearly
planar surface, because subtle changes in the topography are
not sufficient to cause an increment of 45� in the drainage
direction [Willgoose, 2005]. Multiple flow direction algo-
rithms [e.g., Freeman, 1991; Quinn et al., 1991], which
distribute flow to all downslope neighbors in proportion to
slope, perform well in divergent topography but inhibit
convergent flow [Tarboton, 1997], which artificially retards
valley incision. In response to these shortcomings, methods
have been proposed that allow both convergent and divergent
flow and do not restrict drainage directions to 45� increments
[e.g., Costa-Cabral and Burges, 1994; Tarboton, 1997]. The
most efficient of these is the D1 algorithm of Tarboton
[1997], which we use to evaluate Ai,j.
[25] Pelletier [2004] has proposed that ‘‘static’’ equilib-

rium solutions to drainage area-dependent landscape evolu-
tion models, in which @z/@t = 0 for all (x, y), are an artifact
of steepest descent flow routing, whereas numerical meth-

ods based on multiple flow directions produce persistently
migrating drainage networks like those observed in some
physical experiments [Hasbargen and Paola, 2000]. In
contrast, we find that a flow routing method in which flow
directions are not restricted to discrete increments can
generate deterministic numerical solutions with stable drain-
age divides (see section 5.1), a result also obtained by
Moglen and Bras [1995]. One possible explanation for this
difference is that Pelletier [2004] uses a limiting slope
gradient to account for hillslope processes, which episodi-
cally introduces localized changes in elevation that can
significantly alter flow directions. It has previously been
shown that such stochastic effects can cause persistent
drainage migration in numerical models that incorporate
landsliding [Densmore et al., 1998]. We have also found
that the inclusion of a threshold (qc > 0) can make the
criterion for reaching a deterministic equilibrium more
restrictive than the criterion for stability of the numerical
scheme (equation (17)); that is, smaller time steps may be
required. It is possible that real geomorphic thresholds
produce persistently migrating drainage networks in nature,
but this does not appear to be an inevitable consequence of
the flow routing method.
[26] Equation (15) consists of a linear operator (F) and a

nonlinear operator (Y). To solve it forward in time, we use a
splitting method that evaluates these operators in separate
fractional steps:

Dz* ¼ DtY zkð Þ; ð16aÞ

zkþ
1
2 ¼ zk þDz*

2
þDt

2
Y zk þDz*
� �

; ð16bÞ

zkþ1 ¼ zkþ
1
2 þDt

2
F zkþ1
� 	

þ F zkð Þ
� �

; ð16cÞ

where k denotes the time step. The first fractional step (16a)
and (16b) is a second-order Runge-Kutta scheme. The
second fractional step (16c) is a Crank-Nicolson scheme,
which we evaluate with an alternating direction implicit
(ADI) method [Press et al., 1992]. The combination of the
two steps is accurate to second order in space and time. The
Crank-Nicolson step used to evaluate the diffusion term is
unconditionally stable, and so the stability of the entire
method is governed by that of the wave term. In general, the
stability of explicit solutions to wave equations is subject to
the Courant-Friedrichs-Lewy (CFL) stability criterion,
which for the nonlinear wave term in equation (13) is

ffiffiffi
2

p
KAm rzj jn�1Dt

d
� 1 : ð17Þ

For each model run, we specify K, m, and d, and select a
value of Dt that satisfies equation (17) over the entire grid
for the duration of the run.
2.2.2. Spatial Domain, Initial Conditions,
and Boundary Conditions
[27] The rectangular grid is intended to simulate a ridge-

line bounded on two sides (y boundaries) by stream chan-
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nels (Figure 4). The assumption of detachment-limited
conditions implies that these streams are capable of trans-
porting all sediment delivered to them. The incision rate of
the bounding stream channels is equal to the rate of surface
uplift, such that @z@tjj = 0,Ny � 1 = 0. This boundary condition is
specified numerically by setting

r2z
��
j¼0;Ny�1

¼ 0; ð18aÞ

rzjj¼0;Ny�1 ¼ 0; ð18bÞ

Ejj¼0;Ny�1 ¼ 0 : ð18cÞ

The x boundaries of the grid are periodic, such that the
model ridgeline extends infinitely in the x direction and has
topography that repeats with a period of NxDx. The
parameters D, K, E, m, n and qc are uniform in space and
time.
[28] The initial condition consists of a low-relief (�1 m),

pseudofractal surface generated by taking the inverse Four-
ier transform of a two-dimensional, red noise power spec-
trum. The y boundaries of this surface are levelled to
prevent the outlets of stream channels from becoming fixed
to certain locations. The iteration proceeds forward in time
until Dzi,j/Dt = 0 (to within machine precision) for all i, j.

2.3. Resolution Tests

[29] To test the sensitivity of model solutions to the
spatial and temporal resolutions, we performed two sets of
runs: one in which only Dt was varied, and a second in
which only d was varied. Model runs using the same initial
condition produced identical equilibrium solutions for
10 years � Dt � 1000 years (Figure 5a).
[30] When varying d, it was not possible to use the same

initial condition for all runs because the dimensions of the
grid varied. There is consequently some variability in the
solutions for a given d (as indicated by the error bars in
Figure 5b), but the results are, on average, the same for

1 m � d � 16 m: regression of l and z against log10d
2

yields lines with slopes that are not significantly differ-
ent from zero (Figure 5b).

3. Dimensional Analysis

[31] To understand how the terms in equation (13) control
the model topography, we adopt an approach based on
dimensional analysis. Many previous studies have discussed
morphometric scaling relationships between the dimensions
of existing landforms [e.g., Leopold and Maddock, 1953;
Hack, 1957; Melton, 1958; Strahler, 1958; Shreve, 1967;
Bull, 1975; Church and Mark, 1980]. A smaller number
have considered dynamic scaling relationships among the
physical processes that drive long-term landscape evolution
[Strahler, 1958, 1964; Smith and Bretherton, 1972; Smith et
al., 1997a; Church and Mark, 1980; Willgoose et al., 1991a,
1991c; Willgoose, 1994a; Syvitski and Morehead, 1999;
Whipple and Tucker, 1999; Tucker and Whipple, 2002;
Simpson and Schlunegger, 2003].
[32] The properties of a topographic surface that is a

solution to equation (13), including the spacing between
adjacent valleys, l, and the overall relief, z (Figure 4),
should depend on the relative magnitudes of the three terms
on the right-hand side, which can be compared by making
equation (13) dimensionless. Using z as a characteristic
vertical length scale and defining ‘ as a characteristic

Figure 4. Illustration of the model domain and the three
length scales used to measure the topography: l, the
spacing between adjacent valleys; ‘, the horizontal basin
length, which is equal to the distance from the central divide
to the y boundaries; and z, the elevation of the central divide
above the y boundaries.

Figure 5. (a) Mean valley spacing, l, and relief, z, for
different time resolutions. All solutions were computed
from the same initial surface. The variables l and z are
identical for all values of Dt. (b) Mean valley spacing and
relief for different spatial resolutions. Because the grid is
two-dimensional, the spatial resolution is proportional to d2.
Because of differing grid dimensions at different spatial
resolutions, each simulation used a different (but statisti-
cally identical) initial condition. 2s error bars (which are
smaller than the symbols for z) show the resulting
variability among the solutions. The slopes of regression
lines through the two data sets are not significantly different
from zero (P = 0.57 for l, P = 0.29 for z).
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horizontal length scale, the dimensionless form of
equation (13) is

@z0

@t0
¼ D0r02z0 � K 0A0mjr0z0jn � q0ð Þ þ 1 ð19Þ

with

z0 ¼ z

z
; t0 ¼ tE

z
; r0 ¼ r‘; A0 ¼ A

‘2

D0 ¼ Dz
E‘2

; K 0 ¼ K‘2m�nzn

E
; q0 ¼ Kqc

E
:

We take the length scale ‘ to be the horizontal length of a
drainage basin. Because the topographic divide is always
close to the centerline of the grid in the y direction, as
shown in Figure 4, drainage basin lengths are generally
constrained to be close to one half of the y dimension of the
grid (‘ = Nyd/2). We can then define a dimensionless valley
spacing, l0 = l/‘, which is the width-to-length ratio of a
drainage basin, and a dimensionless relief, z 0 = z/‘, which is
the mean slope of the topography in the y direction.
[33] The dimensionless quantities that contain informa-

tion about geomorphic process rates are D0, K0 and q0. q0

describes the magnitude of the erosion threshold relative to
the total erosion rate. The other two quantities can be
understood in terms of three characteristic timescales: the
time required to erode once through the relief is z/E; the
diffusion time for a feature of size ‘ is ‘2/D; and the time
required for a wave in the topography (such as a knickpoint)
with celerity K‘2m (z/‘)n�1 to travel a distance ‘ is ‘n�2m

z1�n/K. Thus, D0 is the ratio of the erosion timescale to the
diffusion timescale, and K0 is the ratio of the erosion
timescale to the advection timescale.
[34] Previous studies have shown that first-order charac-

teristics of the topography such as relief and drainage
density vary systematically with parameters in the govern-
ing equation [e.g., Kirkby, 1987; Willgoose et al., 1991c;
Howard, 1994a, 1997; Moglen et al., 1998; Tucker and
Bras, 1998], and so it is reasonable to expect that l0 will
scale with D0, K0, and q0. Although the relationships govern-
ing valley spacing may not have the same form as those
governing other measures of landscape scale, these previous
studies do help us to intuit the signs of some of these
relationships. l0 should be positively correlated with D0:
higher rates of diffusive sediment transport should lead to
wider valley spacing, because the smoothing effect of
diffusive transport inhibits valley incision, and because
hillslope processes can account for a larger fraction of the
total erosion rate. l0 should be negatively correlated with K0:
a greater potential for stream incision should lead to
narrower valley spacing, because less drainage area is
required to erode the land surface at a given rate.
[35] Although numerous studies have shown that an

erosion threshold can have a significant effect on river
longitudinal profiles [e.g., Snyder et al. 2003] and the
overall form of a landscape [e.g., Willgoose et al.,
1991c; Howard, 1994a; Rinaldo et al., 1995; Tucker and
Slingerland, 1997], the sign of the relationship between l0

and q0 is difficult to predict. One might expect that a higher
threshold for stream incision would widen valley spacing,
because the threshold limits both the rate of stream incision

and the extent of the landscape over which stream incision
can act. The reduction in the stream incision term will lead
to steeper topography, however, which will feed back into
both the hillslope and fluvial terms [Howard, 1994a]. The
net effect on valley spacing is not obvious, nor is the relative
importance of the two mechanisms by which the threshold
should influence erosion: reducing the rate of stream inci-
sion versus limiting its spatial extent.
[36] By analogy to a linear advection-diffusion system,

we might additionally expect that it is possible to charac-
terize the system with a single dimensionless quantity that
gives the relative magnitudes of the advection and diffusion
terms, a quantity similar to a Péclet number, Pe:

Pe ¼ K 0 � q0

D0 ¼ K

D

‘2 mþ1ð Þ�n

z1�n
� qc‘2

z

� �
: ð20Þ

For qc = 0, equation (20) reduces to

Pe ¼ K‘2 mþ1ð Þ�n

Dz1�n
; ð21Þ

which is the ratio of a diffusion timescale to an advection
timescale, and is therefore directly analogous to a Péclet
number in a linear system. Quantities that are conceptually
similar, but differ in form, have been derived for transport-
limited conditions by Willgoose et al. [1991c] and Simpson
and Schlunegger [2003].
[37] Beyond these general expectations, the forms and

relative importance of the hypothesized scaling relation-
ships are not apparent, particularly because the scaling
parameters depend on relief, z, which is not known a priori.
Nor is it clear how quasiperiodic ridge-and-valley topogra-
phy emerges as a landscape develops. We conducted a set of
numerical experiments designed to validate the dimensional
analysis approach, test for and quantify the hypothesized
scaling relationships, and investigate the development of
quasiperiodic valley spacing with time.

4. Numerical Experiments

[38] The numerical experiments fall into four categories:

4.1. Time-Dependent Behavior

[39] To investigate the time evolution of the landscape,
including the development of uniformly spaced valleys and
the approach to a topographic steady state, we performed a
number of model runs in which we recorded and analyzed
the topography at each time step.

4.2. Validation of Dimensionless Quantities

[40] If the dimensionless numbers in equation (19) ade-
quately predict the behavior of the dimensional governing
equation (equation (13)), then the model parameters should
influence the model topography only if they affect the
dimensionless ratios. That is, if individual parameters (D,
K, E, etc.) change in such a way that the dimensionless
ratios do not, the basic properties of the model topography
should remain the same. This is, in part, a test of whether
the horizontal and vertical length scales we have chosen to
characterize the landscape (‘ and z, Figure 4) are appropri-
ate. We calculated model solutions for three different

F04016 PERRON ET AL.: VALLEY SPACING

9 of 21

F04016



combinations of D, K, E, and ‘ that yield the same values of
D0 and K0. For each of the three combinations, we performed
ten model runs starting from different initial conditions,
measured the mean valley spacing, and compared it with the
valley spacing predicted by the other two combinations.

4.3. Influence of Competition Between Advection
and Diffusion

[41] The relative magnitudes of the diffusion and advec-
tion terms in equation (13) reflect the transition in process
dominance from hillslopes to valleys described by Davis
[1892] and Gilbert [1909] and explored by numerous
subsequent studies. To understand how this transition
affects the valley spacing, we computed solutions for a
range of D0 and K0 values, while holding q0 = 0.

4.4. Influence of Erosion Threshold

[42] To explore the hypothesis that the spacing of valleys
is controlled by a threshold for stream incision, we con-
ducted a set of runs in which q0 was varied while holding D0

and K0 constant.

4.5. Parameters and Measurements

[43] The parameters used to obtain all model solutions are
listed in Table 1. With the exception of the time-dependent
behavior discussed in section 5.1, all reported results are
steady state solutions (@z/@t = 0 for all (x, y)).
[44] We measured the relief, z, in each model solution as

the mean elevation along the topographic divide that paral-
lels the y boundaries (Figure 4). We measured the valley
spacing in each solution with the spectral method described
by Perron et al. [2008]. This method, which is similar to
that used by Smith et al. [1997b] to measure rill spacing in
their model, avoids the use of a potentially arbitrary
criterion, such as a drainage area threshold, to define a
channel network. Instead, it provides a measure of the
dominant periodic component of the topography, which in
this study corresponds to the ridge-valley structure in the x
direction. Two modifications to the spectral technique were
made for the purpose of analyzing the model solutions.
First, the surface used to detrend the model topography
prior to taking the Fourier transform was constructed by
averaging the elevations in the x direction rather than by
fitting a plane. Second, no windowing was performed
because the model topography is periodic at the x bound-
aries and tapers to zero at the y boundaries. In cases where
there were multiple spectral peaks, the frequency

corresponding to the ridge-valley wavelength was calculat-
ed as the average of the peak frequencies, weighted by the
spectral power of the peaks.
[45] The periodic boundary condition in the x direction

constrains the number of valleys on either side of the divide
to be an integer, and thus the modeled valley spacing is
‘‘quantized’’ to some extent. To reduce this effect, we used
grids with Nx/Ny � 2 in all cases, and Nx/Ny � 3 in most
cases where our goal was to identify variations in l.

5. Results

5.1. Time-Dependent Behavior

[46] The time evolution of the model topography pro-
vides some insight into the mechanisms by which quasi-
periodic ridges and valleys develop. Figure 6 shows
snapshots of the evolving topography over the course of a
model run. As the rough, approximately planar initial
surface (t = 0) is uplifted relative to the second-order
streams at the y boundaries, incipient valleys propagate
from the y boundaries into the interior of the grid (t =
0.25 Ma). The relief of the landscape increases, and the
centerline of the grid in the y direction becomes a drainage
divide, with the valleys on either side generally draining
toward the nearest point on the y boundary. The spacing
between these incipient valleys is narrow on average, and
relatively aperiodic. Valleys that initially capture larger
drainage areas (and therefore have larger water discharge)
incise vertically and propagate headward more rapidly than
neighboring valleys with smaller drainage areas (t = 0.5–
1.4 Ma). This has two effects: first, it creates a positive
feedback that results in the rapid capture of most of the
drainage area by a few valleys that initially have larger
drainage areas, thereby stunting the growth of valleys that
begin with smaller drainage areas. Second, it creates steeper
side slopes in the rapidly incising valleys, and because both
the magnitude of the advective erosion term (equation (12))
and the creep flux (equation (3)) depend on the slope, the
intervening ridgelines migrate toward the smaller valleys.
Many of the small valleys subject to this competition
disappear entirely (t = 2.5 Ma). If this elimination of small
valleys proceeds to the point at which the spacing between
the remaining valleys is too wide, however, new incisions
form on the broad intervening ridges and propagate into the
interior. From this competition between adjacent valleys, a
stable configuration with uniformly spaced valleys eventu-
ally emerges (t = 4.0–6.0 Ma), and the topography con-

Table 1. Model Parameters Used to Obtain the Solutions Displayed in Figures 1–14

Figure Nx Ny d (m) Dt (years) tfinal (Ma) E (mm a�1) D (m2 a�1) K (10�5 m1�2m a�1) m n qc (m
2m)

5a 200 100 5 10–1000 3.00 0.05 0.005 0.1 1 1 0
5b 200 100 1–16 200 3.00 0.05 0.005 0.1 1 1 0
6, 7 250 100 5 500 6.00 0.05 0.005 0.1 1 1 0
8a 300 100 5 500 2.45 0.1 0.01 35 0.3 0.7 0
8b 300 100 5 500 1.18 0.2 0.02 70 0.3 0.7 0
8c 300 100 10 500 3.05 0.1 0.02 23 0.3 0.7 0
9a 200 100 5 500 3.00 0.01 0.005 0.1 1 1 0
9b 200 100 5 500 3.00 0.05 0.005 0.1 1 1 0
9c 200 100 5 500 3.00 0.1 0.005 0.1 1 1 0
10, 11 300–600 100 5 500 �3 0.1 0.005–0.02 15–200 0.3 0.7 0
12 300 100 5 500 �3 0.1 0.013 40, 60, 107, 151 0.3 0.7 0
13 300–600 100 5 500 �4 0.1 0.013 70 0.3 0.7 0–7.4
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verges toward an equilibrium state (@z/@t = 0) in which the
landscape no longer changes with time.
[47] We tracked the dimensionless relief, z 0, and valley

spacing, l0, through time (Figure 7). z 0 increases monoton-
ically throughout the simulation. Once the incipient valleys
have propagated into the interior of the grid, z 0 approaches
its equilibrium value at a rate that declines roughly expo-
nentially with time. The standard deviation of relief
increases in proportion to the relief, but is very small
throughout the simulation. l0 reaches a local minimum very
early in the simulation as many incipient valleys form at the
y boundaries. The large standard deviation of l0 at this stage
reflects the irregular spacing of the incipient valleys. l0 then
increases monotonically as smaller valleys are forced out of
existence by larger ones, and the standard deviation declines
as the spacing of valleys becomes more uniform.
[48] Several aspects of this time-dependent behavior were

anticipated conceptually by early studies of drainage net-
works. Gilbert [1877] noted the dependence of erosion rate
on slope, and appealed to divide migration and lateral
competition among streams as an explanation for the ‘‘great
regularity’’ of badland drainage basins. He also described
the expansion of basins at the expense of neighboring basins
in a process he called ‘‘abstraction.’’ His idealization of the
geometry of badland divides [Gilbert, 1877, Figure 58] is
very similar to the model domain used in this study. The

competition between adjacent valleys for water was later
proposed as a qualitative explanation for uniformly spaced
rivers by Shaler [1899], who was understandably tempted to
draw analogies to Darwin’s [1859] theory of evolution by
natural selection. Moreover, Shaler [1899] observed that the
spacing of rivers is more uniform in more ‘‘evolved’’
landscapes, i.e., landscapes in which the cumulative eroded
relief is greater. Our results support this observation, as the
variance in valley spacing is smaller at equilibrium than it is

Figure 6. Evolution of the model topography at intervals spaced roughly logarithmically in time.
Horizontal tick interval is 200 m, vertical tick interval is 20 m. No vertical exaggeration.

Figure 7. Time evolution of mean dimensionless valley
spacing, l0, and mean dimensionless relief, z 0, for the model
run shown in Figure 6. Dashed lines are 1s envelopes.
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in the transient state (Figure 7). Horton [1945] also recog-
nized the importance of the competition for drainage area in
developing networks. The dominance of erosional features
that initially capture more drainage is one of the main
principles in his model for the evolution of rill networks,
and the growth of these basins at the expense of smaller
neighboring ones is similar in some respects to his descrip-
tion of basin growth by cross-grading.

5.2. Validation of Dimensionless Quantities

[49] Figure 8 shows three model solutions with unique
combinations of D, K, ‘, and E values, but the same
dimensionless diffusivity, D0, and dimensionless stream
incision coefficient, K0. The means and standard errors from
10 model runs for the cases in Figures 8a–8c are l0 =
0.432 ± 0.012, z 0 = 0.120 ± 0.00002 (Figure 8a); l0 = 0.421 ±
0.004, z 0 = 0.120 ± 0.00002 (Figure 8b); and l0 = 0.437±
0.007, z 0 = 0.120 ± 0.00003 (Figure 8c). The fact that these

predicted values are within two standard errors of one
another, despite differences of a factor of 2 or more in process
rates and spatial scales (Table 1), indicate that D0 and K0 are
good predictors of the basic characteristics of the model
topography, and that our choices of the characteristic length
scales ‘ and z (Figure 4) are appropriate. In sections 5.3 and
5.4, we show that some of these topographic characteristics,
including valley spacing, are sensitive only to Pe.
[50] The dependence of Pe on z, but not on E, suggests that

the driving erosion rate may only control the valley spacing
through its influence on relief, provided equation (13) is valid
for the erosion rates considered. In addition, equation (21)
implies that Pe is independent of relief if the kinematic wave
term in equation (13) is linear in jrzj (i.e., n = 1) and qc = 0.

Figure 8. Equilibrium model solutions with different
values of D, K, ‘0, and E but the same values of the
dimensionless diffusivity, D0, and dimensionless stream
incision coefficient, K0. (a) Reference parameters. (b) D, K,
and E are twice as large as in Figure 8a. (c) The parameter ‘
is twice as large as in Figures 8a and 8b. Parameter values
are listed in Table 1. Horizontal tick interval is 200 m;
vertical tick interval is 10 m. Vertical exaggeration 3X.

Figure 9. Equilibrium model solutions for m, n = 1 and
driving erosion rates (E) spanning an order of magnitude:
(a) E = 0.01 mm a�1, (b) E = 0.05 mm a�1, and (c) E =
0.1 mm a�1. All three runs used the same initial condition.
The x boundaries have been extended periodically to better
display features that span the boundaries. Horizontal tick
interval is 200 m, vertical tick interval is 20 m. No vertical
exaggeration.
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This prediction is consistent with the findings of Howard
[1997] and Tucker and Bras [1998] that erosion rate has no
effect on drainage density if n = 1 and qc = 0, and it is borne
out by our numerical experiments. Setting n = 1 and qc = 0
and varying the erosion rate leads to dramatic variations in
relief, but no change in valley spacing (Figure 9). If the
same initial conditions are used, the positions of the valleys
are identical; only the vertical dimension of the landscape
changes. However, we find that for n 6¼ 1 or qc > 0, both
the relief and the position and spacing of the valleys depend
on E.

5.3. Influence of Competition Between Advection
and Diffusion

[51] By analyzing the equilibrium topography of model
solutions for a range of D0 and K0, with m, n 6¼ 1 and q0 = 0,
we identified scaling relationships for dimensionless valley
spacing and relief in landscapes that are shaped by com-
peting advective and diffusive processes. These scaling
relationships, which are presented graphically in Figure 10,
consist of a set of linear trends in the three-space defined by
D0, K0, and l0, each of which can be described by the set of
parametric equations:

K 0

D0

l0

2
4

3
5 ¼ asþ b ; ð22Þ

where a and b are vectors of constants and s is a parameter
that defines the range over which the relationship applies.
[52] The same trends can be visualized somewhat more

simply as a plot of l0 against Pe or its inverse (a projection
of the data in Figure 10 onto a plane parallel to the l0 axis),
as in Figure 11. To illustrate the changes in the topography
that correspond to the scaling trends, representative model
solutions are shown in Figure 12, and the corresponding
locations in parameter space are indicated in Figures 10
and 11.
[53] Several distinct scaling regimes are evident. For

small Pe, the region marked ‘‘no valleys’’ in Figure 11,
valleys are not easily distinguishable, and the model solu-
tion resembles a steep, undissected ridgeline. Thus, l0 is not
plotted in this region of Figure 11. In steep landscapes,
slope failures and debris flows are likely to occur, and these
processes can play a role similar to that of stream incision.
Field studies have shown that debris flows can incise
entire valley networks in which fluvial wear is minor
[Seidl and Dietrich, 1992; Howard, 1998; Sklar and
Dietrich, 1998; Stock et al., 2005; Stock and Dietrich,
2003, 2006]. Thus, when Pe is small, there are two
possible results. If the small Pe reflects a low value of
K relative to D, the landscape will steepen to the point that
valley-forming erosion processes not included in our
model will become effective. If, on the other hand, the

Figure 10. Plots of model solutions in the three-space defined by (D0, K0, l0) projected onto three
orthogonal planes, as indicated in the inset. Each point represents the mean valley spacing and relief of a
single solution. Trends labeled I–III correspond to the three scaling regimes discussed in section 5.3.
Symbols labeled 1–4 correspond to the representative solutions shown in Figure 12.
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small Pe reflects a small ‘ value (i.e., if the spatial scale of
the landscape is small), an undissected hillslope will form.
[54] At intermediate values of Pe, first-order valleys form,

and we observe the hypothesized narrowing of valley
spacing as Pe increases. This trend, labeled regime I in
Figures 10 and 11, is illustrated by the difference between
the model solutions labeled 1 and 2 in Figure 12. l0 varies
linearly with Pe�1 in regime I (Figure 11b).
[55] As Pe increases beyond regime I, the valley spacing

reaches a minimum, and then begins to increase. This
occurs because the valleys branch, forming tributaries
(solution 3 in Figure 12), and the incision of these tributar-
ies on either side of the ridgelines that run perpendicular to
the y boundaries widens the second-order basins. This trend
of increasing valley spacing due to branching is labeled
regime II in Figures 10 and 11. Figure 11b shows that l0 for
the second-order, branching basins varies linearly with Pe�1

in regime II. Note from the definition of Pe in equation (21)
that for n < 2m + 2, the increase in Pe that leads to
branching can be thought of as either an increase in K/D
or an increase in ‘. That is, an increase in the ratio of stream
incision to diffusive transport that causes branching is
equivalent to viewing a landscape at a larger spatial scale.
Conversely, smaller spatial scales correspond to smaller Pe.
For example, if ‘ and z are taken to be the length and relief
of the tributary basins in the branching model solution
labeled 4 in Figure 12, the resulting value of Pe falls within
regime I (points labeled 4t in Figure 11), which reinforces
the conclusion that this is the range of Pe that corresponds
to first-order basins, independent of their size.
[56] At still higher values of Pe, the sign of the scaling

trend is again reversed: branching valleys become more
narrowly spaced, as illustrated by the difference between
model solutions 3 and 4 in Figure 12. This trend in the

Figure 11. Same data as in Figure 10 plotted against (a) Pe and (b) its inverse. As in Figure 10, trends
labeled I–III correspond to the three scaling regimes discussed in section 5.3, and symbols labeled 1–4
correspond to the representative solutions shown in Figure 12. Symbols labeled 4t correspond to the first-
order tributary basins in solution 4 from Figure 12.
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spacing of second-order basins, labeled regime III in
Figures 10 and 11, is analogous to that observed in first-
order basins in regime I, except that l0 varies linearly with
Pe in regime III (Figure 11a). The observed trends with Pe
make intuitive sense: valley spacing scales linearly with K
(and therefore Pe) in advection-dominated landscapes, such
as branching basins, and linearly with D (and therefore
Pe�1) in diffusion-dominated landscapes, such as first-order
basins.
[57] The trends in Figures 10 and 11 imply that transitions

in structure among drainage basins can be abrupt even in the
absence of thresholds in the governing equations. It is
possible that transitions in natural basins are more gradual
because they are not constrained by boundary conditions
with a fixed geometry. For example, differences in Pe that

affect the geometry of natural first-order basins would
presumably also affect the structure of higher-order basins,
whereas the y dimension of our model grids, which repre-
sents the spacing between two higher-order streams,
remains fixed. But transitions among natural basins could
be still abrupt insofar as the boundary conditions we have
chosen mimic situations that do sometimes occur in real
basins, such as a transient response to a change in Pe in
which low-order basins respond faster than the higher-order
basins that contain them. One way to resolve this issue
would be to model the development of higher-order drain-
age basins in which the interior, nested basins are not
strongly affected by boundary conditions.
[58] The relief, z, does not undergo abrupt changes in

behavior, but rather declines monotonically as Pe increases,

Figure 12. Four representative solutions to equation (13) showing the variety of observed behavior.
Locations of the solutions are indicated on the scaling plots in Figures 10 and 11. Colors in the image
maps (left) show the Laplacian of elevation (r2z) normalized to the maximum and minimum values in
the grid. Concave-up areas (red) are valleys; concave-down areas (blue) are hillslopes. Axis tick intervals
in the perspective views (right) are 200 m in the horizontal and 5 m in the vertical. Vertical exaggeration
4X.
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as shown by the perspective views of the topography in
Figure 12. It is possible to predict z from process rates and
boundary conditions using the scaling relationship identi-
fied above. Equation (22) can be rewritten as

K 0 � b1

a1

¼ D0 � b2

a2

¼ l0 � b3

a3

¼ s ; ð23Þ

where an and bn are the components of a and b.
Combining the first two terms of equation (23) and using
the definitions of K0 and D0 from equation (19) yields an
implicit expression for z that can be solved iteratively:

z ¼ E‘2

D
b2 þ

a2

a1

K‘2m�nzn

E
� b1

� �� �
: ð24Þ

This calibrated expression for total drainage basin relief
complements fully analytic expressions for hillslope or
fluvial relief alone [Whipple and Tucker, 1999; Roering et
al., 2007] and expressions for total relief based on
simplified hillslope process laws [Tucker and Whipple,
2002].
[59] Once relief is known, the dimensionless valley

spacing, l0, can be predicted either by combining the first
and third terms of equation (23), yielding an expression that
is independent of D,

l0 ¼ b3 þ
a3

a1

K‘2m�nzn

E
� b1

� �
; ð25Þ

or by combining the second and third terms, yielding an
expression that is independent of K,

l0 ¼ b3 þ
a3

a2

Dz
E‘2

� b2

� �
: ð26Þ

The values of a, b and s corresponding to the three scaling
regimes, which were determined by orthogonal linear
regression from the data in Figure 10, are given in Table 2,
along with the range of Pe that defines each regime.
[60] As Figure 11 suggests, l0 can also be found in terms

of Pe. The linear trends for regimes I and II have the form

l0 ¼ g1
Pe

þ g2 ; ð27Þ

and the linear trend for regime III has the form

l0 ¼ g1Peþ g2 ; ð28Þ

where gn are constants whose values are listed in Table 2.

5.4. Influence of Erosion Threshold

[61] As mentioned in section 3, a nonzero stream incision
threshold, qc, affects the governing equation in two ways.
First, it is subtracted from the advection term, and therefore
reduces Pe (equation (20)). This is similar to the effect
discussed in section 5.3, and it should widen valley spacing
in the same sense as a reduction in K. Several previous
studies have obtained the analogous result that there is a
positive relationship between the magnitude of an erosion
threshold and valley head source area [e.g., Kirkby, 1994;
Howard, 1994a, 1997; Tucker and Bras, 1998].
[62] Second, a nonzero stream incision threshold will

reduce the landscape area over which the advection term
acts, as expressed by the piecewise function in equation (5).
This is the ‘‘critical distance’’ effect proposed by Horton
[1945] to explain the finite extent of landscape dissection by
stream networks. One might expect the absence of stream
incision on ridgelines and divides (or, for large qc, on
hillslopes in general) to produce an additional widening of
valley spacing beyond that predicted by the reduction in Pe.
[63] Figure 13 shows that this is not necessarily the case.

Increasing qc from zero to 7.4 m0.6 (the range over which

Table 2. Parameter Values for Scaling Relationships in Equations (22), (27), and (28)

Scaling Regimea a b s g1 g2 Pe

I

�1:000
0:007
0:025

2
4

3
5 22:600

0:041
0:424

2
4

3
5 �2.27–1.89 59 ± 2 0.32 ± 0.003 270–950

II

0:993
0:003
�0:117

2
4

3
5 24:325

0:021
0:460

2
4

3
5 �0.93–1.03 �1084 ± 78 1.41 ± 0.07 950–1350

III

0:999
0:004
0:046

2
4

3
5 22:014

0:011
0:502

2
4

3
5 �1.31–1.69 �6.94 ± 0.17 
 10�5 0.64 ± 0.004 >1350

aSee section 5.3 for definitions.

Figure 13. Effect of a variable stream incision threshold
on dimensionless valley spacing. Open gray circles are the
model solutions for regime I (first-order basins) in Figure 11.
Black squares are solutions with a nonzero threshold. Pe is
calculated with equation (20).

F04016 PERRON ET AL.: VALLEY SPACING

16 of 21

F04016



stable first-order valleys form) while holding all other
parameters constant produces a large increase in relief and
causes valley heads to form farther from the central divide
[Tucker and Bras, 1998], but the accompanying increase in
valley spacing is no greater than that predicted by the
reduction in Pe. At high values of qc, the sign of the
relationship between valley spacing and qc even becomes
negative. Relief increases because the threshold limits the
effectiveness of the stream incision term for a given
drainage area and slope, forcing the landscape to steepen
in order to erode at a rate equal to the driving surface uplift
rate, E. This increased steepness partly compensates for the
effect of the threshold, leading to a decrease in Pe that is
modest relative to the size of the increase in qc. For the case
shown in Figure 13, for example, increasing qc from 1 to
6 m0.6 causes Pe to shrink by less than a factor of 2.
[64] It is important to note, however, that if the erosion

threshold steepens the landscape to the point that processes
not included in equation (13) become important, the effect
on valley spacing could be more pronounced, and the
scaling relationships derived here may no longer apply. In
particular, steeper slopes could cause the nonlinear depen-
dence of creep flux on slope to become important [Roering
et al., 1999], or trigger landsliding and debris flows. A
detailed treatment of these processes is beyond the scope of
this study, but it seems likely that their effect on valley
spacing would be significant.
[65] In addition to its control on relief, the ‘‘critical

distance’’ effect has a significant influence on subtler

characteristics of the topography, such as the shapes of
hillslope and valley-head profiles. For example, restricting
the action of the advective term to valley bottoms leads to
the formation of more uniformly curved hillslopes [e.g.,
Howard, 1994a; Tucker and Bras, 1998].

6. Discussion

[66] We have focused primarily on how the relative rates
of the dominant erosion processes control quasiperiodic
valley spacing, but it seems likely that this competition also
controls other characteristic dimensions of the topography
that reflect the interaction of hillslope and fluvial processes,
such as the scale at which hillslopes transition into valleys.
As mentioned in section 1, a widely recognized signature of
this transition is a peak in a plot of topographic slope, jrzj,
against contributing area, A (Figure 14 inset) [e.g., Tarboton
et al., 1989, 1992; Willgoose et al., 1991d, 1992; Willgoose,
1994b; Howard, 1994a]. The contributing area at which this
peak in slope occurs, At, is thought to mark the scale at
which fluvial erosion begins to outpace erosion by hillslope
processes [Willgoose et al., 1991d; Willgoose, 1994b;
Howard, 1994a, 1997; Moglen et al., 1998; Tucker and
Bras, 1998; Dietrich et al., 2003]. We find support for this
idea in a simple scaling argument. The ratio of advection
and diffusion timescales reflects the relative magnitudes of
processes that form valleys and those that inhibit valley
formation. This ratio is scale-dependent; that is, Pe is a
function of ‘. We can therefore solve equation (21) for the
characteristic length for which these timescales are equal
(Pe = 1):

‘c ¼
D

K
z1�n

� � 1
2 mþ1ð Þ�n

: ð29Þ

Following Willgoose et al. [1992], we define the length
scale associated with the observed slope-area transition asffiffiffiffiffi
At

p
. We find that ‘c provides a good estimate of

ffiffiffiffiffi
At

p
for the

numerical solutions presented earlier, underestimating
ffiffiffiffiffi
At

p

by a factor of 1.1 to 3.1, and by less than a factor of 2 in
most cases (Figure 14).
[67] This approach differs from that of Howard [1994a,

1997], who estimates At as the contributing area for which
the hillslope and fluvial erosion terms independently give
the same equilibrium slope and erosion rate. A similar
approach has been used for transport-limited conditions
by Willgoose et al. [1991d], Moglen et al. [1998] and
Tucker and Bras [1998], who estimate At as the contributing
area for which the hillslope and fluvial terms contribute
equally to the total sediment flux. This approach predicts
(compare equation (13) of Howard [1997])

‘c ¼
Dn

K

E

2

� �1�n
" # 1

mþn

; ð30Þ

which underestimates
ffiffiffiffiffi
At

p
by a factor of 1.3 to 7.3

(Figure 14). Equation (29) has the disadvantage that it
requires knowledge of the relief, but this may also be the
reason why it performs slightly better than equation (30),
which accounts for the vertical dimension of the topography

Figure 14. Predicted length scale of the hillslope-valley
transition, ‘c, compared with the observed length scale at
which the slope-area curve reaches a maximum,

ffiffiffiffiffi
At

p
, for

model solutions in Figures 10 and 11. Black symbols are
predictions obtained by assuming equal advection and
diffusion timescales at the hillslope-valley transition
(equation (29)). Gray circles are predictions obtained by
assuming that the advective and diffusive terms acting
independently would produce the same slope and erosion
rate (equation (30)). The inset shows the definition of At on
a slope-area plot for an individual model solution.
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indirectly via the dependence on E. Another possible reason
for the discrepancy is that equation (30) is derived from a
one-dimensional analysis that neglects the effects of
topographic convergence on the hillslope-valley transition.
The two expressions predict a similar dependence of ‘c on D
and K, but the differing exponents suggest that their relative
performance over a wide range of parameter values is a
topic worthy of further investigation.
[68] The characteristic length ‘c also provides a frame-

work for estimating the spatial scale of first-order drainage
basins. As shown in Figure 11, valleys do not form when
Pe < 270. From equations (21) and (29), this implies ‘/‘c <
2701/(2(m+1)�n) � 19. Thus, stable valleys will form only if
the length of a slope exceeds the characteristic length by
roughly an order of magnitude or more. Shorter slopes will
remain undissected. Because ‘c is a function of z, this
criterion reflects the steepness of the slope as well as its
length.
[69] The qualitative changes in the model landscapes at

the edges of the Pe range where first-order basins form
(Figures 11 and 12) suggest an explanation for the restricted
range of width-to-length ratios observed in first-order drain-
age basins in nature. Hack [1957] observed that drainage
basins scale nearly self-similarly, such that the ratio of
drainage area to ‘2 is nearly scale-independent.Montgomery
and Dietrich [1992, Figure 2] measured lengths and areas
for a large number of basins ranging from unchanneled
headwater catchments to major river systems, and found
that the ratio of area to length (a rough measure of width)
for basins of a given length varies only by a factor of a few.
We observe a similarly narrow range of basin aspect ratios
in our equilibrium model results. First-order basins, which
form at intermediate Pe, have 0.3 � l0 � 0.9 for the cases
examined here. At smaller Pe, rather than becoming wider,
valleys become so indistinct that the solution is essentially
an undissected ridgeline, and the topography becomes so
steep that stronger valley-forming processes, such as debris
flows, should become active. At higher Pe, rather than
becoming narrower, valleys branch, and are therefore no
longer first-order. Thus, our simple model provides a
possible explanation for the observation that aspect ratios
of natural first-order basins do not deviate greatly from 1.
[70] This result, like the other inferences derived from our

numerical experiments, is not directly applicable to higher-
order drainage basins, which far exceed the spatial scale at
which creep processes are effective (‘ � ‘c). But high-order
basins are composed of collections of smaller basins, and so
it is possible that the scaling relationships presented here
have implications for the structure and dimensions of
drainage networks at scales much larger than first-order
basins. The long times required to alter the structure of large
basins is a significant factor (it has even been suggested that
the regular basin spacing commonly observed in linear
mountain fronts [Hovius, 1996; Talling et al., 1997] has
been inherited from antecedent lowland drainage patterns
[Castelltort and Simpson, 2006]), but the dynamics of small
basins could nonetheless be important. More work is clearly
required to understand the scaling and structure of large,
high-order drainage basins in which erosion is dominated by
fluvial processes.
[71] The model presented here is intended to describe a

specific type of landscape, and our results, including the

scaling relationships and the finding that variations in the
relative rates of advective and diffusive processes have a
stronger effect on valley spacing than variations in a stream
incision threshold, may not apply to landscapes that are very
different. Our model describes a landscape like the Gabilan
Mesa (Figure 2): soil-mantled, with sufficient surface
cohesion that fluvial incision is detachment-limited, and
slopes gentle enough that nonlinear diffusion effects
[Roering et al., 1999, 2007], slope failures, and debris flows
do not contribute significantly to erosion. As previous
modeling studies have noted, this is one of the simplest
cases that leads to the formation of drainage basins
[Howard, 1994a; Tucker and Bras, 1998]. We have inves-
tigated the dynamics of such a landscape in detail, while
acknowledging the possibility that the form, and even the
sign, of relationships between process rates and topographic
characteristics can depend on the entire set of processes that
are at work [Tucker and Bras, 1998; Talling and Sowter,
1999]. Our objective is not to identify these relationships for
all possible suites of geomorphic processes, but to make a
simple prediction, about a specific kind of landscape, that
can be tested in the field.
[72] Efforts to model the long-term evolution of land-

scapes, including the present one, have shown that an
equation with the form of equation (13) can generate
solutions that resemble landscapes ranging from first-order
drainage basins [e.g., Willgoose et al., 1991a; Howard,
1994a; Tucker and Bras, 1998] to entire orogens [e.g.,
Tucker and Slingerland, 1996; Kooi and Beaumont, 1996;
van der Beek and Braun, 1998; Whipple and Tucker, 1999].
Despite the many insights that such studies have offered
into the dynamics of evolving landforms, it remains some-
what unclear whether the model landscapes merely look
realistic, or whether they accurately predict the form and
dimensions of real topography. A common criticism of
model equations that are similar in form to equation (13)
is that some of their components, particularly the stream
incision term, are based on descriptions of geomorphic
processes that have not been adequately tested in the field.
For example, the linear excess shear stress model
(equation (5)) is a commonly used expression for which
limited supporting evidence is available [Dietrich et al.,
1993]. The scarcity of evidence is due in part to the gradual
and often episodic nature of erosion processes, which makes
direct field measurements difficult and hinders calibration
efforts. It is therefore challenging to test the predictions of
landscape evolution models by comparison with specific
landscapes, yet this is exactly what is necessary to evaluate
the adequacy of the equations on which the models are based
[Willgoose, 1994a; Church, 2003;Dietrich et al., 2003;Hoey
et al., 2003;Willgoose et al., 2003]. The first step should be to
test a model’s ability to reproduce the most salient topo-
graphic features that emerge in an evolving landscape.
Uniform valley spacing is one such feature, and the scaling
relationships presented here provide a framework for such a
test.

7. Conclusions

[73] We investigated the development of evenly spaced
first-order drainage basins using a simple numerical model
that includes two processes: diffusion-like sediment trans-
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port due to creep or rain splash, and detachment-limited
fluvial erosion. As the model topography evolves over time,
evenly spaced basins develop through a competition for
drainage area, in which basins that initially capture more
area due to slight differences in initial conditions are able to
stunt the growth of smaller adjacent basins. As the topog-
raphy approaches an equilibrium, valley spacing becomes
more regular through the disappearance of these smaller
basins and through lateral migration of drainage divides and
valleys.
[74] The most important parameter controlling landscape

morphology in such a system is a dimensionless ratio of
diffusion to advection timescales, which is analogous to a
Péclet number, Pe. The length scales used to define Pe are
the vertical relief and horizontal length of a drainage basin.
At low values of Pe (]102), no drainage basins form. At
high values of Pe (^103), branching basins form. First-order
basins form at intermediate values of Pe (�102–103), with a
lateral spacing that varies linearly with Pe�1. The restricted
range of spacings over this intermediate range of Pe
suggests an explanation for the restricted range of width-
to-length ratios observed in natural first-order basins. The
transition from hillslope to valley morphology, as expressed
by the peak in a plot of topographic slope against drainage
area, occurs at a drainage area that gives Pe � 1.
[75] Both the competition between hillslope and fluvial

processes, proposed in various forms by Davis [1892],
Gilbert [1909], Smith and Bretherton [1972] and others,
and the erosion threshold of Horton [1945] influence the
form of ridge-and-valley topography considerably. We find,
however, that the former is the more important control on
valley spacing. Although the introduction of an erosion
threshold diminishes the stream incision term, even reduc-
ing it to zero where drainage area and slope are small, the
resulting increase in slope mitigates the effect on valley
spacing.
[76] The occurrence of uniform valley spacing affords an

opportunity to compare model predictions of long-term
landscape evolution with a prominent, measurable signal.
The scaling arguments presented here, which yield relatively
simple expressions for valley spacing and drainage basin
relief, offer a basis for such a comparison.
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