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Spectral signatures of characteristic spatial scales and nonfractal
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[1] Landscapes are sometimes argued to be scale-invariant or random surfaces, yet
qualitative observations suggest that they contain characteristic spatial scales. We
quantitatively investigate the existence of characteristic landscape scales by analyzing
two-dimensional Fourier power spectra derived from high-resolution topographic maps of
two landscapes in California. In both cases, we find that spectral power declines sharply
above a frequency that corresponds roughly to hillslope length, implying that

the landscape is relatively smooth at finer scales. The spectra also show that both
landscapes contain quasiperiodic ridge-and-valley structures, and we derive a robust
measure of the ridge-valley wavelength. By comparing the spectra with the statistical
properties of spectra derived from randomly generated topography, we show that such
uniform valley spacing is unlikely to occur in a random surface. We describe several
potential applications of spectral analysis in geomorphology beyond the identification of
characteristic spatial scales, including a filtering technique that can be used to measure
topographic attributes, such as local relief, at specific scales or in specific orientations.
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1. Introduction

[2] Some properties of landscapes suggest that Earth’s
surface topography might be scale-invariant. Field observa-
tions and perusal of topographic maps lead to the qualitative
impression that erosionally dissected landscapes have a
similar appearance over a wide range of spatial scales
[e.g., Davis, 1899; Montgomery and Dietrich, 1992]. For-
mal analyses of topographic data suggest that some land-
scapes may be either self-similar (consisting of landforms
with the same shape and aspect ratio at every scale) or self-
affine (aspect ratio varies with scale) [e.g., Vening Meines:z,
1951; Mandelbrot, 1975; Sayles and Thomas, 1978; Church
and Mark, 1980; Mandelbrot, 1983; Matsushita and Ouchi,
1989; Newman and Turcotte, 1990; Balmino, 1993; Turcotte,
1997; Rodriguez-Iturbe and Rinaldo, 2001], or may display
other properties of random or fractal surfaces [e.g., Shreve,
1966; Ahnert, 1984; Culling and Datko, 1987; Tarboton et
al.,1988; Ijjasz-Vasquez et al., 1992; Schorghofer and
Rothman, 2001, 2002]. These observations have led to
suggestions that the physics that govern the development of
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erosional landforms are independent of spatial scale [e.g.,
Somfai and Sander, 1997].

[3] Yet it has also been observed that landscapes have
characteristic spatial scales. Field observations and meas-
urements show that there is a limit to the erosional dissec-
tion of landscapes, in the sense that fluvial channels begin to
form at scales much coarser than the granularity of the soil
[Gilbert, 1877, 1909; Horton, 1945; Montgomery and
Dietrich, 1992; Dietrich and Montgomery, 1998]. Studies
that report self-similarity or self-affinity of topographic
surfaces often note that this property only holds within a
certain range of spatial wavelengths [Church and Mark,
1980; Mark and Aronson, 1984; Gilbert, 1989; Moore et al.,
1993; Xu et al., 1993; Evans and McClean, 1995; Gallant,
1997; Dodds and Rothman, 2000]. Many landscapes also
appear to contain quasiperiodic structures, including evenly
spaced rivers and drainage basins [e.g., Shaler, 1899;
Hanley, 1977; Hovius, 1996; Talling et al., 1997; Schorghofer
etal.,2004]. For example, the landscape in Figure 1, part of the
Gabilan Mesa, California, contains NW—SE-trending, first-
order valleys with a remarkably uniform spacing.

[4] The quasiperiodic valley spacing is visually striking.
Is this merely a reflection of the human eye’s affinity for
organized patterns, or is it an important signature of the
erosion processes that shaped the landscape? What is the
“wavelength” of the ridges and valleys, and are they truly
as nonrandom as they appear, or are they merely part of a
continuum of scale-invariant landforms? Quantitative
answers to these questions require a robust measurement
technique that provides a statistical description of the

topography.
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[5] Geomorphologists often use drainage density, defined
as the total length of erosional channels per unit planform
area, as a measure of the extent of landscape dissection.
Despite recent advances that permit the calculation of
drainage density as a continuous variable across a landscape
[Tucker et al., 2001], drainage density cannot provide
answers to all of the questions posed above. Measuring
drainage density requires the mapping of channels, a task
that is difficult to perform without detailed field investiga-
tions [Montgomery and Dietrich, 1988; Dietrich and
Dunne, 1993], and thus drainage density cannot be reliably
calculated from topographic data alone. Furthermore, drain-
age density measures the extent of a drainage network, but
provides no specific information about its structure. A
topologically random drainage network can have the same
drainage density as a network with evenly spaced channels.
Even in a landscape with evenly spaced first-order channels,
the inverse of drainage density and the average valley spacing
will be comparable [Horton, 1932], but not necessarily equal.

[6] If a landscape consists of well defined, parallel
valleys, one can measure their spacing directly from topo-
graphic maps [e.g., Hovius, 1996; Talling et al., 1997].
However, few landscapes have such simple structure. If
valleys are not parallel, it is not obvious how or where their
spacing should be measured. One therefore requires a robust
measurement technique based on the overall shape of the
topography rather than the planform geometry of the
drainage network.

[7] Spectral analysis provides a means of measuring the
strength of periodic (sinusoidal) components of a signal at
different frequencies. The Fourier transform takes an input
function in time or space and transforms it into a complex
function in frequency that gives the amplitude and phase of the
input function. If the input function has two or more indepen-
dent dimensions, the Fourier spectrum gives amplitude and
phase as a function of orientation as well as frequency.

[8] A number of previous studies have used Fourier
transforms to analyze topographic and bathymetric data.
Some of these papers discuss the identification of periodic
structures [Rayner, 1972; Hanley, 1977; Stromberg and
Farr, 1986; Ricard et al., 1987; Mulla, 1988; Gallant,
1997] or textures with preferred orientations [Steyn and
Ayotte, 1985; Mushayandebvu and Doucouré, 1994],
whereas others use the spectrum to describe the variance
structure or scaling properties of the topography [e.g., Steyn
and Ayotte, 1985; Voss, 1988; Ansoult, 1989; Hough, 1989;
Goff and Tucholke, 1997]. Many of these studies used
methods that were tailored to specific data sets or questions,
and thus their procedures are not readily extendible to any
topographic surface.

[0] In this paper, we describe a general procedure for
applying the two-dimensional, discrete Fourier transform to
topographic data. We introduce a statistical method that
provides a means of measuring the significance, or degree
of nonrandomness, of quasiperiodic structures. By applying
this procedure to two topographic data sets, we show that
there are strong periodicities at certain scales, rather than a
continuous distribution of spectral power across all scales,
and that topographic roughness declines sharply below a
certain spatial scale. We illustrate a filtering procedure that
can be used to isolate the different frequency components of
a topographic surface, and can thereby provide a means of
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measuring topographic attributes at certain scales and ori-
entations. We conclude by discussing the implications of
our results for fractal descriptions of landscapes.

2. Methods
2.1. Two-Dimensional Discrete Fourier Transform

[10] The discrete Fourier transform (DFT) of a two-
dimensional data set z(x, y) consisting of N, x N, measure-

ments spaced at even intervals Ax and Ay can be written
[Priestley, 1981; Percival and Walden, 1993]

Ne—1 Ny—1

x

=> D =

m=0 n=0

Z(kerk;) (mAx, nAy)e G ) (1)

where k, and &, are the wavenumbers in the x (positive east)
and y (positive north) directions, and m and n are indices in
the z array (x = mAx, y = nAy). The complex DFT expresses
the amplitude and phase of sinusoidal components of z. The
DFT is an N, x N, array, and the wavenumbers are the
indices of the array. If z is real, the DFT is symmetric, and
all the information is contained in any two adjacent
quadrants of the DFT array. The output of most algorithms
that compute the DFT must be rearranged to place the zero
wavenumber element near the center of the array. Provided
N, and N, are even, dividing the output array into four
equal quadrants and exchanging the nonadjacent quadrants
will place the zero wavenumber element at the position (N,/
2+ 1, NJ2 — 1) in the new array. If the wavenumbers
are referenced to this location, an element at (k,, k,) in the
DFT array corresponds to the two orthogonal frequency
components

e k,

fx:NxAxv 'f;:NyAy’

(2)

and the ranges of the wavenumbers are —N,/2 < k, < N,/2
—land —N,/2 — 1 < k, < N)/2. If x and y have units of
length, as in the case of topographic data, f, and f, have
units of cycles per unit length. The Nyquist frequency, the
highest frequency that can be resolved by data with a
spacing A, is (2A)™'. Note that, for two-dimensional data
arranged on a rectangular grid, A and the Nyquist frequency
vary with orientation.

[11] The 2D DFT provides information about orientation
as well as frequency. The element at Z(k,, k,) describes a
wave with a wavelength

A= —, 3)

and an orientation #, measured counterclockwise from the
positive x direction (east) and given by

ky Ay
ke Ax”

tand =

4)

The quantity |/f? +/? is often referred to as the radial
frequency, and 'will be denoted here by f. Note that a two-

dimensional wave with orientation € has crests and troughs
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Figure 1.

Shaded relief map of a portion of the Gabilan
Mesa, California, at approximately 35.9°N, 120.8°W. The
topographic data, with a horizontal resolution of 1 m, were
collected and processed in 2003 by the National Center for
Airborne Laser Mapping (NCALM). The Salinas River and
U.S. Highway 101 are visible to the southwest.

that trend perpendicular to #. This distinction becomes
particularly important when interpreting the spectral
signatures of ridge-and-valley structures in topographic
surfaces. All orientations discussed here refer to the
orientation of the wave, which is orthogonal to the trend
of ridges and valleys.

[12] The power spectrum provides a measure of how the
variance of z varies with frequency. One common way of
estimating the power spectrum is the DFT periodogram:

1 2
Pprr (ke ky) = —+5 Z(kx’k . (5)
( )’) Nsz}% } )’>‘

The DFT periodogram has units of amplitude squared. It is
linearly related to the power spectral density (PSD), which
has units of amplitude squared per unit x frequency per unit
y frequency, or amplitude squared per frequency squared:
Ppsp(fs f,) = Porrlks k) - NN, AxAy. Parseval’s theorem
states that the sum of the Pppr array (or, equivalently, the
integral with respect to frequency of the Ppgp array) is equal
to the variance of z. The root-mean-square amplitude 4 of
the frequency components of z represented by a subset of
the Pppr array is

A = 2+/XPprr, (6)

where Y Pppr is the sum of all the elements of the subset.
The factor of 2 accounts for the fact that the DFT array is
symmetric, with each signal appearing at both positive and
negative frequencies. Because many natural signals,
including ridges and valleys, are neither perfectly sinusoidal
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nor perfectly periodic (or have frequencies that fall between
the discretely sampled frequencies in the DFT), their
spectral signature is often spread over a range of
frequencies. Thus, in practice, the reconstruction of
amplitude usually requires summation over several adjacent
elements that define a peak in the Pppr array.

[13] Figure 2 illustrates the relationship between a two-
dimensional surface and its power spectrum. The input
surface (Figure 2a) consists of two orthogonal sine waves.
The wave in the x direction has a wavelength four times as
long, and an amplitude twice as large, as the wave in the y
direction. The DFT periodogram (Figure 2b) contains two
sets of peaks that are symmetrical about the zero frequency
element at the center of the plot. Frequency is inversely
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Figure 2. (a) A surface consisting of two orthogonal sine
waves: one with a wavelength of 128 in the x direction, the
other with a wavelength of 32 in the y direction and half the
amplitude of the first. (b) A contour map of its power
spectrum. The two peaks aligned in the x direction (6 = 0°)
correspond to the lower frequency (longer wavelength)
signal, and therefore are closer to the origin; the peaks aligned
in the y direction (6 =90°) correspond to the higher-frequency
(shorter wavelength) signal, and therefore are further from
the origin. The cross hairs mark the zero-frequency origin,
and the dashed angle illustrates how 6 is measured.
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proportional to wavelength, so the peaks that align in the y
direction are four times farther from the cross hairs at zero
frequency than those that align in the x direction, which
correspond to a signal with a wavelength four times as long.
Because spectral power is a measure of mean squared
amplitude, the peaks that align in the y direction are one
fourth as high as those that align in the x direction, which
correspond to a signal with twice the amplitude. The two
components of the input signal are perfect sinusoids with
frequencies that correspond exactly to two of the discretely
sampled frequencies in the DFT array, and so the spectral
power in each peak is contained within a single element of
the array (the spectrum in Figure 2b has been smoothed to
make the peaks more easily visible).

2.2. Spectral Analysis of Topographic Data:
Preprocessing Steps

[14] The Fourier transform makes assumptions about the
input signal z(x, y) that are violated by typical topographic
data. Special processing procedures are therefore necessary
to reduce effects that can contaminate the power spectrum.
The Fourier transform treats the input signal as though it is
stationary, with the same mean, variance, and frequency
content throughout the sampled interval. Few natural signals
are strictly stationary [Weedon, 2003], but the power spec-
trum provides a useful description of a signal if its mean and
variance are roughly constant [Priestley, 1981]. To remove
any spatial trends in the mean of a topographic data set, a
linear function in x and y (i.e., a plane) is fit to the input
signal, z, and then subtracted from z.

[15] The Fourier transform also assumes that the input
signal is periodic at the edges of the sampled interval. If this
is not the case, sinusoids at many different frequencies are
required to describe the edge discontinuities, and these
spurious signals will contaminate the power spectrum
[Priestley, 1981; Percival and Walden, 1993]. This phe-
nomenon is known as spectral leakage, and its effects can be
mitigated with a two-step procedure. The linear detrending
step described above reduces the magnitude of the edge
discontinuity. The detrended signal is then multiplied by a
window function, W, that has a maximum at its center and
tapers smoothly to zero at its edges. Several simple window
functions are suitable for most practical applications [see
Press et al., 1992, section 13.4]. We use a Hann (raised
cosine) window, which for each array element (m, n) is
given by

Tl +cosT) r<v
W(m,n):{é( r) r>
12 = (m—a)’+(n — b)’
P d2b2
b2 cos? 0 + a2 sin® 0
No—1 N, —1
= ch=-2
T 2
—b
tan @ = ~ . (7)
m—a

The normalization of the power spectrum can be modified
to account for the change in variance that occurs when the

PERRON ET AL.: CHARACTERISTIC SCALES IN LANDSCAPES

F04003

input signal z is multiplied by the window function. For any
two-dimensional window function W(m, n), equation (5)
becomes [Press et al., 1992, section 13.4]

Nl Ny~

Porr (ke, ky) = (NxNy Z Z W(m,n)2> {Z(kkay”z' (8)

m=0 n=0

This normalization ensures that the sum of the elements in
the Pppr array will equal the variance of the detrended data
set z(x, ), consistent with Parseval’s theorem.

[16] The most efficient algorithm for calculating the DFT
of large topographic data sets is the fast Fourier transform
(FFT), the most commonly used version of which is the
algorithm of Cooley and Tukey [1965]. The efficiency of
this algorithm is greatest when N, and N, are integer powers
of two. This can be achieved by padding the windowed data
with zeros.

2.3. Significance Levels

[17] In addition to providing information about the wave-
length and orientation of periodic components of a topo-
graphic surface, the power spectrum can be used to assess
the significance of these components. We are particularly
interested in obtaining a measure of the degree of nonran-
domness of a particular component; more formally, we seek
the confidence level at which we can reject the null
hypothesis that an observed periodic signal has occurred
by chance in a random topographic surface. Given an
estimate of the mean or background spectrum of a topo-
graphic surface, P(f), and the measured value of the power
spectrum at a given frequency, this confidence level corre-
sponds to the probability that the spectrum of a random
surface will exceed the background by the observed amount
at that frequency. If the Fourier coefficients (and therefore
the amplitude and phase of the various frequency compo-
nents) are assumed to be random, normally distributed
variables, then the spectral power at a given frequency will
be y? distributed with two degrees of freedom [Jenkins and
Watts, 1968]. The spectral power corresponding to a confi-
dence level «v is [Gilman et al., 1963; Percival and Walden,
1993; Torrence and Compo, 1998]

Pa(f) =331 — @)P(), ©)

where x3(1 — a) is the value at which the \* cumulative
distribution function with 2 degrees of freedom equals 1 — a.
The method used to estimate the background spectrum P(f)
is described in section 3.1.

[18] Even if the power at a given frequency exceeds the
significance level calculated from equation (9), it is possible
that the observed peak is a chance occurrence. Indeed, some
“false positives™ are to be expected if the spectral power at
each frequency is \’-distributed: for example, 5% of the
sampled frequencies in the spectrum of a random surface
should exceed the 95% significance level (o = 0.05). It is
therefore also important to examine the distribution of
significance over the spectrum. If signals that exceed the
significance level are clustered together in space, orientation,
or both, the observed peaks are less likely to be spurious.
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Figure 3. Shaded relief maps of (a) a subregion of the Gabilan Mesa, California, the landscape shown

in Figure 1, with illumination from the left, and

(b) part of the South Fork Eel River watershed,

California, with illumination from the upper left. Grid spacing of the elevation data is 4 m. The axes of
both maps give zone 10 UTM coordinates in meters. (¢, d) Portions of the normalized power spectra for
the landscapes in Figures 3a and 3b, respectively, produced by dividing the spectra by the background
spectra in Figures 4a and 4b. Wavelengths corresponding to the largest peaks, with uncertainties derived
from the peak widths, are shown on each plot. Contours correspond to significance levels calculated from
equation (9). Cross hairs mark the zero-frequency origin. Note that wavelength (= 1/frequency) decreases

nonlinearly with distance away from the origin.

[19] The width of a spectral peak reflects the degree to
which a feature is periodic and sinusoidal, because quasi-
periodic or nonsinusoidal features must be described by a
range of frequencies. Peak width (for example, the full
width at half of the peak maximum) can therefore provide
an estimate of the variability in a quasiperiodic structure, in
a manner analogous to a standard deviation. Because
frequency and wavelength are inversely proportional, this

uncertainty envelope will not necessarily be symmetric
about the peak value in the spatial domain.

3. Application to High-Resolution Topographic
Data

3.1. Measuring Quasiperiodic Topographic Structures

[20] The techniques described in section 2 can be used to
test the assertion that landscapes are scale-invariant, random
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surfaces, and to describe quantitatively any quasiperiodic
structures. We analyzed the spectra of two topographic data
sets, one from the Gabilan Mesa, California, a landscape
with characteristic spatial scales that are immediately obvi-
ous to the eye (Figure 3a), and another from the South Fork
Eel River, California, a landscape in which characteristic
scales are less apparent (Figure 3b).

3.1.1. Topographic Data

[21] Both data sets are airborne laser swath maps with a
vertical precision of <10 cm. Prior to gridding, raw laser
returns from vegetation were removed with a block-mini-
mum filter [Axelsson, 1999; Haugerud and Harding, 2003].
The resulting bare-earth data density averages one return per
square meter for the Gabilan Mesa, and 2.6 returns per
square meter for the Eel River. (Gridded bare-earth data
with 1-m resolution are available for the Eel River site in the
data archive at http://www.ncalm.org.) The horizontal res-
olution of the gridded data was reduced to Ax, Ay =4 m to
improve computational efficiency. As we show below, this
grid resolution easily resolves the shortest wavelengths in
the topography with significant amplitude relative to the
vertical precision. The grid resolution was reduced by
discarding points rather than by averaging, because averag-
ing has the undesirable effect of suppressing spectral power
at high frequencies.

[22] Like the larger section of the Gabilan Mesa shown in
Figure 1, the topography of the subsection in Figure 3a is
dominated by NE—SW-trending canyons with orthogonal,
evenly spaced tributary valleys. The distance between the
two main canyons is roughly 500 m, and the spacing of
adjacent tributary valleys (or, equivalently, the width of the
intervening hillslopes) is typically between 150 and 200 m.
The topography of the Eel River site (Figure 3b) is less
visually suggestive of characteristic scales than the Gabilan
Mesa, though there does appear to be some regularity in the
arrangement of kilometer-scale ridges and valleys. The
orientations of ridges and valleys are also more variable
than in the Gabilan Mesa.

3.1.2. One-Dimensional Power Spectra

[23] Two-dimensional power spectra were computed for
both landscapes. Trends in spectral power with changing
frequency are most easily visualized by plotting the DFT
mean-squared amplitude against radial frequency, which
collapses the two-dimensional spectra into one-dimensional
plots (Figures 4a and 4b). Several interesting features are
apparent in the spectra. In general, spectral power (and
therefore amplitude) declines with increasing frequency, as
is typically the case for landforms. At intermediate frequen-
cies (10" m™' S /< 1072 m "), there are several broad
peaks in the spectra that suggest departures from this trend.
At higher frequencies, there is a marked steepening of the
spectral slopes. The peaks and high-frequency roll-off are
not artifacts of the processing procedure, as they are present
in the spectra even when no detrending or windowing steps
are performed. At lower frequencies, the spectral slope is
gentler. This is due in part to the detrending of the
topography prior to taking the DFT, which reduces the
power at wavelengths comparable to the size of the sampled
region, but a smaller reduction in spectral slope at long
wavelengths is observed even if no preprocessing steps are
applied.
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[24] The frequency at which the spectral roll-off occurs
was identified for each spectrum by fitting least-squares
regression lines to the log-transformed, binned data in
Figures 4a and 4b. Beginning with the lowest frequency
point, and subsequently moving through all the points, the
line was fit to all points at frequencies greater than or equal
to the present point. The roll-off frequency was identified as
the point at which the magnitude of the regression line slope
(B) reached a maximum, and above which the goodness of
fit (+*) reached a plateau (Figures 4c and 4d). This proce-
dure yielded roll-off frequencies of 5.6 x 103 m™!
(wavelen%th = 180 m) for the Gabilan Mesa and 4.0 x
10° m™ (wavelength = 250 m) for the Eel River.

3.1.3. Background Spectra and Significance Levels

[25] To assess the significance of the peaks observed at
intermediate frequencies in Figures 4a and 4b, it is neces-
sary to estimate the background spectrum, P(f). The sim-
plest approach would be to use the binned values as a
representative mean spectrum, but these values are biased
by the peaks. A better alternative is to use the mean
spectrum of a random topographic surface with the same
overall statistical properties as the real topography, but
without a concentration of variance into any particular
frequency bands. We used the diamond-square algorithm
[Fournier et al., 1982], a method commonly used to
approximate fractal surfaces, to generate 1000 surfaces with
the same variance (and therefore the same total spectral
power) and grid dimensions as the topographic data sets,
calculated the corresponding power spectra using the same
processing technique applied to the real topography, and
averaged the 1000 spectra. The roughness of the randomly
generated surfaces, and therefore the spectral slope, is
determined by a parameter H, which varies from 0 (rough-
est) to 1 (smoothest). For each landscape, we used the value
of H that provided the best least-squares fit to the binned
values below the roll-off frequency: H = 0.3 for the Gabilan
Mesa, and H = 0.5 for the Eel River. These background
spectra are plotted in Figures 4a and 4b. The divergence of
the background spectra from the binned data at high
frequencies highlights the roll-off in power in both spectra,
and shows that it is more pronounced in the Gabilan Mesa
than in the Eel River.

[26] When the one-dimensional spectra are divided by the
background spectra, deviations from the background are
more apparent (Figures 4e and 4f). In both spectra, power is
concentrated into two main peaks, which occur at wave-
lengths of roughly 450 m and 170 m for the Gabilan Mesa,
and roughly 800 m and 170 m for the Eel River. All of these
peaks exceed the 95% significance level calculated from
equation (9). Moreover, the concentration of spectral power
into the frequencies surrounding these peaks (Figures 3c,
3d, 4e, and 4f) indicates that the apparent significance of the
peaks is not spurious: 24% of the sampled frequencies
below the roll-off exceed the 95% significance level for
the Gabilan Mesa, and 14% for the Eel River, compared
with the expected value of only 5% for a random surface.
We can infer that the corresponding topographic structures
are sufficiently periodic that they are unlikely to have
occurred by chance in a random surface. The observation
that the peaks in the Eel River spectrum exceed these
significance levels by a smaller margin indicates that the
ridges and valleys there are less periodic than in the
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Figure 4. One-dimensional power spectra for (a) the Gabilan Mesa (Figure 3a) and (b) the Eel River
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Circles are the mean values within bins spaced logarithmically in frequency. Solid and dashed curves are
background spectra estimated by averaging the spectra of randomly generated topographic surfaces with
the same variance as the real data. The deviation of the background spectra from the binned values
illustrates the roll-off in spectral power above the frequencies marked with vertical lines. (¢, d) Quantities
used to identify these roll-off frequencies. Note that the three highest values of § in Figure 4d are
identical. (e, f) normalized spectra produced by dividing the spectra in Figures 4a and 4b by the
background spectra. Solid lines showing the maximum values in 50 logarithmically spaced bins are
included to highlight the upper envelopes of the normalized spectra. Dashed lines show significance
levels calculated from equation (9). Arrows mark the boundaries between frequency bands used to
construct the filtered topography in Figure 5.

Gabilan Mesa, consistent with the visual comparison be-
tween Figures 3a and 3b.
3.1.4. Two-Dimensional Power Spectra

[27] The two-dimensional spectra in Figures 3¢ and 3d
reveal more about the geometry of these quasiperiodic
structures, and provide estimates of the uncertainties in
the measured wavelengths. The two-dimensional spectra

were divided by two-dimensional versions of the back-
ground spectra in Figures 4a and 4b, a procedure analogous
to that used to produce the normalized spectra in Figures 4¢
and 4f. The two large peaks in the Gabilan Mesa spectrum
(Figure 3c) indicate a ridge-and-valley structure oriented at
131° with a wavelength of 444797, m. (The uncertainty
envelope corresponds to the full width, in the radial
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direction, of the spectral peak at half its maximum value.)
This corresponds to the large, NE—SW-trending canyons in
Figure 3a. As the map in Figure 3 suggests, these peaks are
especially prominent because the width of the data set spans
only a few 444-m wavelengths, and therefore the signal
appears very periodic. The smaller, higher-frequency peaks
with the same orientation are harmonics of the main peak, a
consequence of the nonsinusoidal shape of the ridges and
canyons.

[28] The paired clusters of five smaller peaks in Figure 3¢
are the spectral signature of the tributary valleys and the
hillslopes that separate them. Because the hillslopes are
lobate structures with a finite length (as opposed to infi-
nitely long ridgelines, like the sinusoids in Figure 2), several
superimposed groups of sine waves with slightly different
orientations, amplitudes, and frequencies are required to
describe their shape. The largest of these peaks corre-
sponds to a signal oriented at 45° with a wavelength of
170*% m, and the second largest to a signal oriented at 29°
with a wavelength of 155"7 m. Pooling these two meas-
urements yields an average spacing of 163"}, m. The
peaks corresponding to the 444-m and 163-m signals
together account for 28% of the total variance in the
detrended topography.

[29] Peaks corresponding to quasiperiodic structures are
easily recognized in the two-dimensional power spectrum
for the Eel River site (Figure 3d), though the peaks are less
prominent than those in the Gabilan Mesa spectrum. The
two large peaks near the center show that the major ridges
and valleys have a wavelength of 7617%5%% m oriented 22°.
As in the Gabilan Mesa, smaller peaks with the same
orientation are harmonics that reflect the nonsinusoidal
shape of the ridges and valleys, but the harmonics in the
Eel River spectrum are stronger because the ridges and
valleys are more triangular in cross section. Again, the main
peaks corresponding to the large-scale ridges and valleys
are strong because the data set spans only a few wave-
lengths. The largest peaks in the orthogonal direction,
which correspond to features with an orientation of 121°
and a wavelength of 176" m, result from an abundance
of roughly ENE—WSW-trending tributaries. Several fre-
quency components with slightly different orientations are
again required to describe the lobate geometry of the
hillslopes separating the tributary valleys. Some of the
smaller peaks at wavelengths of ~150—-200 m correspond
to less numerous tributary valleys trending E-W or N—S.
The peaks corresponding to the 761-m and 176-m signals
together account for 29% of the total variance in the
detrended topography.

3.2. Filtering

[30] Having identified the portions of the power spectrum
that correspond to various structures in the topography, we
can isolate those structures for further analysis using Fourier
filtering. The Fourier transform is reversible; that is, the

original discrete function z(x = mAx, y = nAy) can be
recovered from its DFT Z(k,, k),
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To reconstruct the portion of the topography that corre-
sponds to certain frequency components of interest, one
performs an inverse DFT on only those frequency
components.

[31] As an example, we used this filtering approach to
separate the topography of the Gabilan Mesa and Eel River
sites into components at three different scales. Using the
normalized spectra in Figures 4e and 4f as a guide, we
identified two frequencies for each landscape that bound the
peak corresponding to the ~170-m ridges and valleys, f; the
lower frequency and f, the higher frequency. We then
constructed three two-dimensional filter functions based
on these frequencies: a low-pass filter, a band-pass filter,
and a high-pass filter,

1 S <h

Flow = {exp (—(é’;/i)z) >4 (11)

202 (12)

_(r_1 2
P — oxp (M)

—(/=p)
a@_{“ﬂ 5ot >f<ﬁ‘ (13)

1 /=5

The edges of the low-pass and high-pass filters are radial
Gaussian functions centered on f; and f,, respectively, with
standard deviations o chosen to be 1|/, — f;|. The band-pass
filter is a Gaussian centered halfway between f] and f;, with
o = % 5> — fi|- DFTs of the detrended, unwindowed
topographic data sets were multiplied by the filter functions,
and inverse DFTs were computed, yielding the surfaces in
Figures Sc—5h. This exercise confirms that the two sets of
peaks in Figures 4e and 4f correspond to the roughly
orthogonal ridge-valley structures observed in both land-
scapes. The remaining high-frequency components describe
features that account for a small fraction of the total
variance of the topography. These include sharp topo-
graphic discontinuities, such as channel banks and breaks in
slope at the base of hillslopes, and minor roughness
elements such as hummocky terrain on hillslopes and small
measurement errors in the altimetry.

[32] Fourier filtering offers a robust means of measuring
topographic attributes at different scales. Using the filter
1 — Fiow(f), we removed the larger, ~450-m ridges and
valleys from the Gabilan Mesa, yielding the surface in
Figure 6a. This surface allows us to create a continuous
map of local relief at the scale of first-order drainage basins.
At each location, the relief is taken to be four times the
standard deviation of elevations within a 250-m radius. Four
standard deviations was found to provide a close match to
the total elevation range within each window, while still
varying smoothly in space. Using the total range of eleva-
tions produces a discontinuous map, because it reflects only
two elevations within each window location. The 250-m
window radius was chosen because it is slightly larger than
the measured ridge-valley wavelength. The resulting map
(Figure 6) shows trends in the local relief that are not
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Figure 5. Perspective views of (a, b) the landscapes shown in Figure 3, and surfaces reconstructed from
the frequency bands corresponding to (c, d) larger valleys, (e, f) smaller valleys, and (g, h) small-scale
roughness elements, including channel banks, using the filters in equations (11)—(13). Frequency bands
are indicated in Figures 4e and 4f. Horizontal tick interval is 500 m, vertical tick interval is 40 m. Vertical

exaggeration is 2 x.

obvious from visual inspection of the Gabilan Mesa topog-
raphy in Figures 1, 3a and 5a.

4. Discussion
4.1. Deviations From Fractal Scaling

[33] Having demonstrated the application of Fourier anal-
ysis to high-resolution topographic data and explored the
information that can be extracted, we can return to the

question of whether Earth has fractal surface topography. As
noted in section 1, previous authors using similar techniques
have drawn the conclusion that topography is scale-invari-
ant. In this section, we evaluate this conclusion by compar-
ing our results with the predictions of the fractal model.
[34] Landforms are generally larger in amplitude at longer
wavelengths. The simplest spectrum with this property is a
“red noise” spectrum with an inverse power-law depen-
dence of spectral power on frequency: P(f) o< £ °. It is
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Figure 6.

(a) Perspective view of the section of the Gabilan Mesa shown in Figure 3a, after the larger,

~450-m ridges and valleys have been removed with a spectral filter. (b) A continuous map showing the
distribution of local relief at the scale of first-order drainage basins, created from the surface in Figure 6a.

Contour interval is 2 m.

commonly reported that topographic spectra obey this
relationship, and considerable attention has been devoted
to interpretations of the exponent (3 [e.g., Burrough, 1981;
Mark and Aronson, 1984; Hough, 1989; Norton and
Sorenson, 1989; Huang and Turcotte, 1990; Polidori et al.,
1991; Chase, 1992; Klinkenberg and Goodchild, 1992; Lifton
and Chase, 1992; Ouchi and Matsushita, 1992; Xu et al.,
1993; Gallant et al., 1994; Wilson and Dominic, 1998]. In
general, (3 reflects the rate at which the amplitudes of land-
forms decline relative to wavelength. For two-dimensional
spectra, (3 =3 indicates that amplitude is directly proportional
to wavelength [Voss, 1988], such that landforms are self-
similar, with a height-to-width ratio that is independent of
scale. Other values of 3 imply that the topography is self-affine
rather than self-similar: 3> 3 indicates that shorter-wavelength
features have smaller height-to-width ratios, and 8 < 3
indicates that shorter-wavelength features have larger height-
to-width ratios. The exponent 3 is related to the fractal
dimension, D, of the surface by [Berry and Lewis, 1980;
Saupe, 1988; Huang and Turcotte, 1990]

_3-8

D=7 (14)

Note that these relationships apply to the spectra in
Figures 4a and 4b because they are collapsed versions of
two-dimensional spectra, as opposed to spectra derived
from one-dimensional topographic profiles.

[35] A topographic surface that is well described by the
fractal model has some notable properties. First, the same
scaling relationship between amplitude and wavelength
should hold over all wavelengths. Second, the fractal
dimension of a surface should lie within the range 2 <
D < 3. From equation (14), the exponent 3 in the
relationship P(f) o f” should therefore lie within the
range 2 < 3 < 4. Third, there should be no concentration
of variance into particular frequency bands, and therefore
the topography should consist of landforms with a
continuum of wavelengths.

[36] The Gabilan Mesa and Eel River display several
spectral characteristics that are inconsistent with the fractal
model. First, the kink in the power spectrum, with a rapid
decline of spectral power at higher frequencies (Figures 4a
and 4b) implies a transition to a different scaling relation-
ship between amplitude and wavelength at wavelengths less
than ~180 m for the Gabilan Mesa, and ~250 m for the Eel
River. At intermediate frequencies below this spectral roll-
off, the spectral slopes for the Gabilan Mesa (3 = 2.8) and
the Eel River (6 = 3.1) are close to 3, indicating that
landforms have a nearly constant height-to-width ratio.
Above the roll-off, the steeper spectral slopes (3 = 5.2
and 4.5, respectively) indicate a height-to-width ratio that
declines with increasing frequency. This does not imply that
there are no topographic features at scales below the spectral
roll-off, nor does it necessarily imply that dissection of the
landscape by channel networks does not proceed at finer
scales. It does imply that finer-scale features are much
smoother than coarser-scale features. The observation that
the break in spectral slope is larger for the Gabilan Mesa
than for the Eel River suggests that short-wavelength
features make a somewhat larger contribution to the topo-
graphic roughness at the Eel River, and that the transition
from a landscape composed of ridges and valleys to one
composed of relatively smooth hillslopes is more pro-
nounced in the Gabilan Mesa.

[37] Several previous studies have noted a similar decline
in spectral power at short wavelengths, and although some
of these conclude that it is probably an accurate reflection of
the shape of the topography [Culling and Datko, 1987;
Gallant, 1997; Gallant and Hutchinson, 1997; Martin and
Church, 2004], it is often interpreted as an artifact of
topographic data interpolation [Polidori et al., 1991; Moore
et al., 1993; Gallant et al., 1994]. This clearly is not the
case at the Gabilan Mesa or the Eel River sites, because the
4-m topographic data can resolve frequencies much higher
than the roll-off frequency. Spectral evidence for a lower
limit of topographic roughness may have been overlooked
in the past because of the low spatial resolution of topo-
graphic data. The kink in the spectrum may not be as
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apparent in previously published spectra because it occurs at
a frequency comparable to the Nyquist frequency of many
topographic data sets. For a 30-m digital elevation map, for
example, the shortest resolvable wavelength (equal to the
inverse of the Nyquist frequency) is 60 m, which is only a
factor of 2 to 3 smaller than the wavelengths at which the
spectral transitions in Figures 4a and 4b occur. In contrast,
the high-resolution data used here leave little doubt that the
spectral kink represents a change in the character of the
topography. This observation underscores the need for
topographic data with a resolution sufficient to reveal
landscape structure at scales significantly finer than that of
first-order drainage basins.

[38] It is sometimes suggested that a break in the scaling
properties of a topographic surface indicates a transition
from one suite of scale-invariant physical processes to
another, with a resultant transition in the fractal dimension
of the topography [e.g., Huang and Turcotte, 1990]. If we
attempt to apply this concept to the topographic spectra
presented here, we find a second way in which they are
incompatible with the fractal model. As mentioned above,
the exponent 3 for a fractal surface should lie between 2
and 4. Both the Gabilan Mesa (5 = 2.8) and the Eel River
(B = 3.1) satisfy this constraint at frequencies below the
roll-off (though the range of frequencies below the roll-off
is too narrow to give a clear fractal spectrum), but at
frequencies above the roll-off, both spectra exhibit power-
law scaling trends with 8 > 4. This demonstrates that both
landscapes are smoother at fine scales than a fractal surface.

[39] The characteristic of the two landscapes that is most
at odds with the fractal model is the occurrence of quasi-
periodic ridge-and-valley structures in the topography. The
resulting concentration of power into specific frequency
bands can appear small when spectra are plotted on loga-
rithmic axes, particularly when spectral power spans many
orders of magnitude, but the significance of the spectral
peaks becomes more apparent when compared with an
appropriate background spectrum (Figures 4e and 4f).
Indeed, we have shown that much more variance is con-
centrated into these frequency bands than would be
expected for a random surface.

[40] Figures 4e and 4f also show a well-defined break
between the spectral peaks associated with quasiperiodic
structures at different wavelengths. The spectral decompo-
sition illustrated in Figure 5 demonstrates that these peaks in
the spectrum correspond to the roughly orthogonal ridges
and valleys observed in the shaded relief maps of the
topography. This is consistent with the visual impression
that there is a break in scale between successive branches of
the valley network in both landscapes.

[41] The results presented here, which are based on only
two study areas, do not necessarily indicate that the fractal
model is inconsistent with all landscapes. Many landscapes
have less uniform spacing of ridges and valleys than the
Gabilan Mesa. The presence of complicating factors such as
local tectonic deformation, heterogeneities in the strength or
structure of bedrock and soil, or complex boundary con-
ditions can obscure the characteristic scales that would
otherwise emerge in an evolving landscape. For example,
in the northwestern portion of the landscape in Figure 1,
where several roads wind along the hillslopes, localized
tectonic deformation has resulted in a pattern of landscape
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dissection that appears less periodic than the remainder of
the terrain. In some cases, mechanisms such as bedrock
jointing may introduce characteristic scales that differ from
those expected from erosion processes alone.

[42] Characteristic scales can emerge from erosion pro-
cesses even in landscapes where significant heterogeneities
exist, however. The steep terrain surrounding the South
Fork Eel River is sculpted by debris flow scour, slope-
dependent hillslope sediment transport, and deep-seated
landsliding. The landslides disrupt the ridge-and-valley
topography in many areas, leaving irregular topographic
benches and discontinuous valleys. These effects are appar-
ent in the eastern and northeastern portions of the area
shown in Figure 3b. As we have shown here, characteristic
scales still emerge in some parts of the landscape, but the
prominence of deep-seated landsliding at the Eel River is
probably one of the reasons why the topography there is less
periodic than that of the Gabilan Mesa (section 3.1.3).

[43] While the occurrence of characteristic scales in land-
scapes is by no means universal, our measurements imply
that they might be present in landscapes that were previ-
ously thought to be scale-invariant. Field observations
suggest that quasiperiodic structures are common in land-
scapes in which erosion processes, substrate properties and
tectonic forcing are spatially uniform. In the Gabilan Mesa,
for instance, the topography has been produced by the
dissection of poorly consolidated Plio-Pleistocene sedi-
ments with bedding planes parallel to the original mesa
surface. These sediments and the granitic basement beneath
them have been uplifted with minimal local deformation,
and the base level for the Mesa is set by the incision of the
Salinas River to the southwest [Dohrenwend, 1975; Dibblee,
1979]. Models of long-term landscape evolution, which
explore the interactions of erosion processes with simple
tectonic forcing, geometrically simple boundary conditions,
and spatially uniform substrate properties, support the idea
that quasiperiodic landforms can develop under such con-
ditions [e.g., Howard, 1994; Kooi and Beaumont, 1996;
Densmore et al., 1998; Tucker and Bras, 1998].

[44] Such self-organized features inspired some of the
earliest hypotheses about landscape evolution mechanisms.
Davis [1892] and Gilbert [1909] suggested that the transi-
tion from hillslopes to valleys is controlled by a transition in
process dominance from slope-dependent transport (creep)
at small scales to overland flow transport at larger scales, an
idea that was expounded on quantitatively by Kirkby
[1971]. Smith and Bretherton [1972] and others extended
this idea of a process competition to the incipient develop-
ment of spatially periodic landforms, but these studies did
not make predictions that could be compared to field
measurements. Horton [1945] introduced the idea that a
threshold for overland flow erosion sets the scale of the
hillslope-valley transition by creating a “belt of no erosion™
on and around drainage divides.

[45] In a separate manuscript (J. T. Perron et al., Controls
on the spacing of first-order valleys, submitted to Journal of
Geophysical Research, 2008), we build on these previous
analyses to investigate the origins of the characteristic
scales documented here. Using a dimensional analysis
approach combined with a numerical landscape evolution
model, we demonstrate that the wavelength of quasiperi-
odic ridges and valleys depends on the spatial scale at
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which fluvial dissection gives way to smooth hillslopes, and
on the relative rates of the dominant erosion and transport
processes shaping soil-mantled landscapes like the Gabilan
Mesa. Our analysis indicates that it is possible to derive
quantitative estimates of long-term process rates by measur-
ing characteristic scales of landscape self-organization.

4.2. Benefits and Limitations of the Fourier Transform

[46] The examples we have presented demonstrate that
spectral analysis is a robust means of analyzing topographic
structures that are qualitatively apparent but difficult to
measure objectively. One could use a map and ruler to
measure the spacing of some of the subparallel valleys in
the Gabilan Mesa, but such an approach involves an
arbitrary choice of which valleys to measure, and is poorly
suited to landscapes in which the ridges and valleys are not
parallel. In contrast, spectral analysis provides the basis for
a relatively simple, accessible measurement technique that
(1) reflects the entirety of a sample of terrain rather than a
few features selected because they are visually striking, (2)
is sensitive to elevation in addition to the horizontal
structure of the topography, (3) can be applied to landscapes
with variable ridge and valley orientations, and (4) requires
no subjective delineation of landscape elements, such as the
extent of the channel network.

[47] There are two main problems with the application of
the discrete Fourier transform to topographic data. First, the
data are usually nonstationary, even when periodicities are
as pronounced as in the Gabilan Mesa. Indeed, nonstatio-
narity of the signal may be one attribute of topography that
contributes to apparent fractal scaling [Hough, 1989]. Sec-
ond, topographic features such as ridges and valleys are not
sinusoids, but instead have a complex shape that must be
described by a range of frequencies.

[48] Techniques have been developed to address these
problems. The maximum entropy method [Burg, 1967,
1975; Press et al., 1992, section 13.7] is sometimes used
to estimate the power spectrum of nonstationary data sets of
short duration or small spatial extent. Wavelet transforms
allow for a variety of nonsinusoidal basis functions, and
were designed with nonstationary signals in mind. They
have been applied in a variety of fields in which nonstation-
ary signals are common (for reviews, see Foufoula-Georgiou
and Kumar [1994] and Kumar and Foufoula-Georgiou
[1997]), including topographic analysis [e.g., Malamud and
Turcotte, 2001; Lashermes et al., 2007]. A branch of wavelet
analysis using basis functions better suited to topographic
surfaces has been applied to one-dimensional topographic
profiles [Gallant, 1997; Gallant and Hutchinson, 1997], and
wavelets have proved useful for identifying morphologic
transitions similar to those documented here [Lashermes et
al., 2007].

[49] These techniques have limitations, however. The
maximum entropy method is subject to the same effects
of nonstationarity as DFTs, and so the lone advantage of the
technique in this context is that it allows nonstationary data
sets to be parsed into shorter segments for analysis. The
results of wavelet transforms (particularly transforms of
two-dimensional data) are more difficult to interpret than
those of the Fourier transform, and the positive wavelet
transforms that use basis functions modeled after landforms
are nonreversible [Gallant, 1997; Gallant and Hutchinson,
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1997], making filtering impossible. Our results demonstrate
that by using the preprocessing steps described here, it is
possible to make useful measurements with the discrete
Fourier transform, which is relatively simple to apply,
produces results that are easily interpreted, and can easily
be extended to filtering applications. Use of the Fourier
transform also facilitates comparisons with past research on
the scaling properties of landscapes, many of which have
been based on Fourier spectra.

4.3. Further Applications in Geomorphology

[50] Spectral analysis of topography has several applica-
tions beyond those presented above. By performing DFTs
within a moving window, it would be possible to map the
spatial variability in landscape properties, such as the
wavelength or significance level of quasiperiodic structures,
in a manner analogous to that used to produce the contin-
uous map of local relief in Figure 6. Spectral properties
could provide a basis for comparing attributes of synthetic
topography with those of natural landscapes. For instance,
temporal variations in the power spectra of numerical or
physical models of landscape evolution could be used to
quantify the approach to a statistical steady state when an
exact steady state (fixed topography in which the erosion
rate is spatially constant) is not observed. Laboratory
experiments [e.g., Hasbargen and Paola, 2000; Lague et
al., 2003] have produced topographic surfaces that reach a
mass-balance steady state, but in which elevation is not a
constant function of position and time. Because the power
spectrum contains no phase information, it should remain
unchanged if the frequency content of the model landscape
is the same, even if the positions of ridges and valleys are
not fixed. Finally, the observation that much of the variance
in high-resolution topographic data is concentrated in rela-
tively narrow frequency bands highlights the potential for
data compression techniques that store and transfer topo-
graphic information as a function in the frequency domain
rather than in space, an approach analogous to widely used
compression standards for digital images [e.g., Wallace,
1991].

5. Conclusions

[5s1] By analyzing two-dimensional Fourier spectra de-
rived from high-resolution topographic maps, we have
shown that landscapes’ spectral characteristics can deviate
in several important ways from the fractal scaling that is
often assumed to describe topographic surfaces. The spectra
for two soil-mantled landscapes in California have transition
frequencies above which spectral power declines more
rapidly than is expected for a fractal surface, indicating that
the topography is relatively smooth at finer scales. Each
landscape also contains quasiperiodic ridge-and-valley
structures in two distinct wavelength ranges. By comparing
the measured spectra with spectra derived from synthetic
surfaces, we have shown that these landforms are suffi-
ciently periodic that they would be very unlikely to occur in
a random surface. In both landscapes, the smallest of the
quasiperiodic structures occurs at roughly the same wave-
length as the roughness transition. This raises the possibility
that the roughness transition and uniform valley spacing are
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signatures of the same mechanism, and that this mechanism
operates at a characteristic spatial scale.
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