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The scaling exponent of a 1/ f� noise time series is commonly estimated from the power-law slope of its
Fourier power spectrum. Here I show that because 1/ f� noises typically have significant power above the
Nyquist frequency, measurements of their power spectra will often be severely distorted by aliasing, not only
near the Nyquist frequency, but also far below it. I show that spectral aliasing typically leads to large system-
atic biases in the scaling exponents, and thus the fractal dimensions, that are estimated from the power-law
slopes of 1 / f� noise spectra. I describe a simple spectral filtering method that corrects the distortions intro-
duced by spectral aliasing, and recovers the broadband spectrum of 1/ f� noises. Like a Wiener filter, this
filtering method does not require that the correct spectrum is known in advance. I illustrate this filtering
technique using two environmental noise spectra that are distorted by aliasing.
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I. INTRODUCTION

The internal dynamics of many complex natural systems
are often investigated through the fluctuation scaling of their
time-series behavior. Noisy time series’ fluctuation scaling is
often characterized using spectral analysis. Of particular in-
terest are noise series whose power spectra are inverse power
functions of frequency, the so-called 1/ f� noises. 1 / f� noises
are found in many natural systems, and the mathematics of
fractals provides a natural framework for their interpretation
and analysis. Examples are found in natural phenomena as
diverse as heartbeats �1�, walking gaits �2�, animal popula-
tion dynamics �3�, granular creep �4�, geomagnetic intensity
�5�, atmospheric temperature �6�, hydrological time series
�7�, and paleoceanographic isotopic records �8�.

Correctly interpreting 1/ f� noises requires accurately de-
termining their scaling exponents �, which are typically es-
timated from the log-log slopes of their Fourier power spec-
tra. Here I show that spectral aliasing can significantly distort
the apparent scaling exponents of 1 / f� noises. 1 / f� noises
are particularly vulnerable to aliasing because their spectral
power decreases relatively slowly with increasing frequency.
Accurately measuring and interpreting 1/ f� noise spectra re-
quires detecting and correcting the aliasing artifacts embed-
ded in them.

The goals of this paper are �1� to quantify how aliasing
distorts measurements of 1 / f� noise spectra, and �2� to dem-
onstrate a spectral filtering technique for correcting those dis-
tortions. I briefly review the mathematics of spectral aliasing
in undersampled time series. Theoretical calculations predict,
and numerical experiments confirm, that spectral aliasing in
1/ f� noises can substantially inflate measurements of spec-
tral power, leading to significant underestimation of the
power-law slope �, even for modest degrees of undersam-
pling. I describe how these distortions can be corrected by a
spectral filtering method analogous to Wiener filtering. This
filtering method involves �1� modeling the 1/ f� noise spec-

trum, �2� calculating the aliases that would be created by
sampling such a 1/ f� noise process, and �3� multiplying the
measured real-world spectrum by a spectral filter, formed by
the ratio of the modeled 1/ f� spectrum with and without
aliases. Like a Wiener filter, this spectral filter is effective
even if the modeled spectrum is inaccurate; thus it does not
require that the correct spectrum is known in advance. I dem-
onstrate this filtering technique by applying it to two envi-
ronmental noise spectra that are distorted by undersampling.

II. SPECTRAL ALIASING IN UNDERSAMPLED
TIME SERIES

Any continuous function of time x�t� has a corresponding
Fourier transform X�f�, defined by its convolution with sine
and cosine waves of frequency f ,

X�f� � �
−�

�

x�t�e−i2�ft dt

= �
−�

�

x�t�cos�2�ft�dt + i�
−�

�

x�t�sin�2�ft�dt . �1�

For many natural phenomena, the phase information con-
tained in the Fourier transform is not important; instead, the
feature of interest is the magnitude of fluctuations, as mea-
sured by the spectral power SX�f�,

SX�f� � �X�f��2 = ��
−�

�

x�t�cos�2�ft�dt	2

+ ��
−�

�

x�t�sin�2�ft�dt	2

. �2�

A power spectrum—a plot of SX�f� versus frequency, usually
on log-log axes–provides a graphical summary of the fluc-
tuation scaling of a noise series. The power spectrum of a
1/ f� noise series �for which SX�f�
 f−�� will plot as a
straight line on log-log axes, and its slope provides a
straightforward estimate for the scaling exponent �.*Electronic address: kirchner@eps.berkeley.edu
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The continuous function x�t� is usually not directly ob-
servable; instead, the available data consist of measurements
of x�t� at an evenly spaced set of sampling times. To empha-
size the important distinction between the continuous func-
tion x�t� and its discretely sampled counterpart, I denote the
latter as y�tj�=x�j / fs�, where fs is the sampling frequency
and j is an integer-valued index variable. The set of discrete
samples y�tj� necessarily contains less information than the
continuous function x�t�—infinitely less information, in the
general case. An exception to this general rule arises if x�t�
has no fluctuations at any frequency above half the sampling
frequency �that is, if SX�f�=0 for all f �0.5fs�. In this case
the Nyquist sampling theorem demonstrates that the set of
discrete samples y�tj� will contain equivalent information to
the continuous function x�t�, in the formal sense that both
x�t� and its Fourier transform X�f� could be exactly deter-
mined from the y�tj� alone �9,10�. This important special
case has given rise to special terminology: the critical fre-
quency 0.5fs is termed the Nyquist frequency fN, and x�t� is
said to be band-limited to frequencies below fN. If the sam-
pling rate is less than 2 times the highest frequency compo-
nent in x�t�, or equivalently if x�t� is not band-limited to
frequencies below fN, the Nyquist sampling theorem is not
satisfied and the time series y�tj� is said to be undersampled.

If the time series y�tj� is undersampled, the loss of infor-
mation relative to the continuous function x�t� will be mani-
fested as a critical ambiguity: a sinusoidal wave of frequency
f0 will yield exactly the same set of evenly spaced measure-
ments y�tj� as a sinusoidal wave of any other frequency
kfs± f0, for any integer k. Thus the apparent spectral power
measured at f0 will reflect both the true spectral power of the
continuous function x�t� at f0, and the spectral power of all
its aliases at frequencies kfs± f0.

Figure 1 illustrates the essence of this problem. The
sampled points shown in Fig. 1�a� perfectly describe a sinu-
soid of frequency f0=0.3fs. However, the same points also
exactly describe sinusoids of frequencies fs− f0=0.7fs and
fs+ f0=1.3fs �Figs. 1�b� and 1�c�, respectively�, as well as
any other sinusoid of frequency kfs± f0. The discretely
sampled waves at all frequencies kfs± f0 �black curves in
Figs. 1�b� and 1�c�� will appear as aliases at frequency f0
�gray curves in Figs. 1�b� and 1�c��. A complex waveform
that combines the three frequency components of Figs.
1�a�–1�c� �black curve, Fig. 1�d��, when discretely sampled,
will appear to describe a wave at frequency f0 �gray curve,
Fig. 1�d��, but with greater amplitude than the true signal
component at f0 �dotted curve, Fig. 1�d��. The measured
power at f0 will reflect both the true signal component at f0
�Fig. 1�a�� and its aliases from the higher-frequency compo-
nents fs− f0 and fs+ f0 �Figs. 1�b� and 1�c��.

One can straightforwardly quantify how aliasing affects
the power spectrum of a known function x�t� subjected to
discrete sampling �11,12�. The Fourier transform of the dis-
cretely sampled time series y�tj� is

Y�f� = �
−�

�

x�t�III�t�e−i2�ftdt , �3�

where III�t� is the comb distribution �11�, composed of an
evenly spaced array of delta functions,

III�t� = �
j=−�

�

��fst − j� , �4�

where � is the Dirac delta function. �For dimensional consis-
tency between Y�f�, y�tj�, and x�t�, the sampling distribution
III�t� must be dimensionless. Because the delta function’s

FIG. 1. Aliasing illustrated in the time domain. Vertical bars
indicate sampling times; the sampling interval �t is determined by
the sampling frequency fs. �a� The sampled data points �dots� are
consistent with a sine wave of frequency f0=0.3fs, below the Ny-
quist frequency fN=0.5fs. �b� A sine wave of frequency f =0.7fs

= fs− f0, when sampled at the same times, will yield the same data
points as in �a�. For any frequency f0 below the Nyquist frequency,
there are an infinite number of frequencies f =nfs± f0 above the
Nyquist frequency that yield identical data when sampled at the
sampling frequency fs; panel �c� shows another such alias, at a
frequency of f =1.3fs= fs+ f0. �d� The solid black curve shows a
waveform composed of the sine wave from �a�, shown as a dotted
line, summed with its two aliases from panels �b� and �c�. When
sampled at the sampling frequency fs, this waveform yields data
points that are consistent with a sine wave of frequency f0=0.3fs

�gray curve�, but at an amplitude much greater than that frequency’s
actual contribution to the waveform �dotted curve�.
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dimension is the reciprocal of its argument’s dimension, the
argument of � must be specified in the nondimensional form
used in �4�. Superficially similar forms with dimensional ar-
guments, such as ��t− j�t�, appear widely in the literature
but lead to dimensional inconsistencies.� The Fourier trans-
form Y�f� will reflect both the spectral characteristics of x�t�
and the distortions introduced by the sampling function
III�t�. One can evaluate those distortions using the following
line of analysis. Since III�t� is a periodic function, repeating
every �t=1/ fs, it can be reexpressed as a Fourier series,

III�t� = �
k=−�

�

cke
i2�kfst, �5�

where, using the identity ��fst�=��t� / fs, one can show that
the Fourier coefficients ck are all 1,

ck =
1

�t
�

−�t/2

�t/2

��fst�e−i2�kfstdt =
1

�t

1

fs
�

−�t/2

�t/2

��t�e−i2�kfstdt

=
1

�t

1

fs
= 1. �6�

Combining �3�–�6�, one can recast the Fourier transform of
y�tj� as

Y�f� = �
−�

�

�
k=−�

�

ei2�kfstx�t�e−i2�ftdt

= �
−�

�

�
k=−�

�

x�t�e−i2��f−kfs�tdt . �7�

Because the summation in �7� is taken over all k, one can
replace the term −kfs with kfs in the exponential without loss
of generality. Interchanging the order of summation and in-
tegration in �7� then yields,

Y�f� = �
k=−�

� �
−�

�

x�t�e−i2��f+kfs�tdt = �
k=−�

�

X�f + kfs� . �8�

That is, Y�f�, the Fourier transform of the sampled time se-
ries y�tj�, equals the Fourier transform X�f� of the continuous
function x�t� at the frequency of interest f , summed with the
Fourier transforms of all of the aliases X�f +kfs�,

�9�

Each of the aliases at f +kfs may be either in phase or out of
phase with the true signal at f . Thus each alias may either
increase or decrease the apparent amplitude at any frequency
f depending on the phase angle � between the signal and the
alias,

�X�f� + X�f + kfs��2 = �X�f��2 + �X�f + kfs��2

+ 2�X�f���X�f + kfs��cos � . �10�

In noise spectra, the phase angle � between any two fre-
quency components will be random; this is the essence of
what noise means. As a result, the last term of �10� will
randomly take on both positive and negative values for each
particular frequency f , but its expected average value will be
zero. Thus,

E†�X�f� + X�f + kfs��2‡ = �X�f��2 + �X�f + kfs��2, �11�

from which it directly follows that the expected value of the
power spectrum of the sampled signal y�tj� is the power
spectrum of the continuous function x�t� plus the sum of all
of its aliases:

�12�

Because x�t� is a real function, the complex Fourier trans-
form X�f� is Hermitian, so SX�f�=SX�−f�. As a result �12� can
be rewritten for positive frequencies only, in the form

�13�

Figure 2 illustrates how the distortions introduced into the
measured spectrum SY�f� by aliasing will depend on the
high-frequency tail of the SX�f�. From Fig. 2 and Eq. �13�,
several key observations can be made. First, if the continu-
ous function x�t� is band-limited to frequencies below the
Nyquist frequency fN=0.5fs, aliasing will not occur; SY�f�
will exactly equal SX�f� because there will be no spectral
power at any frequencies kfs± f that could be aliased �Fig.
2�a��. Second, if this criterion is not met �Fig. 2�b��, aliasing
will at least double the measured spectral power SY�fN� at the
Nyquist frequency because the aliased spectral power from
SX�fs− fN= fN� will equal the true signal power SX�fN�. Third,
the measured spectrum SY�f� will be symmetrical around f
= fN, which in turn implies that the high-frequency tail of
SY�f� will resemble white noise as f approaches fN. Although
white-noise tailing is often ascribed to quantization error or
measurement noise, it is also an expected by-product of
aliasing under quite general conditions, as demonstrated by
Fig. 2 and the analysis presented above. Fourth, the effects of
aliasing are not necessarily confined to the high-frequency
tail of the power spectrum. As Fig. 2�c� shows, if the signal
x�t� contains frequency components above the sampling fre-

ALIASING IN 1/ f� NOISE SPECTRA: ORIGINS, CONSEQUENCES, AND REMEDIES PHYSICAL REVIEW E 71, 066110 �2005�

066110-3



quency fs, the measured spectrum SY�f� will be distorted by
multiple overlapping aliases across its entire frequency
range.

III. SPECTRAL ALIASING IN POWER-LAW NOISES

The effects of spectral aliasing are particularly severe in
1/ f� noises, because a power-law spectrum �SX�f�=S0f−�,
where S0 is an arbitrary constant that sets the scale of the
spectral power� will have relatively large power in its high-
frequency tail, compared to �for example� an exponential
�SX�f�=S0e−�f� or Gaussian �SX�f�=S0e−�f2

� spectrum. In

theory, if Eq. �13� were applied to a power-law noise spec-
trum,

SY�f� = S0f−� + �
k=1

�

S0�kfs + f�−� + �
k=1

�

S0�kfs − f�−�,

�14�

the infinite summation terms would fail to converge for any
�	1. However, in the real world a 1/ f� spectrum with �
	1 cannot extend to infinitely high frequency; its total en-
ergy, and thus the variance of its time series, would be infi-
nite. Instead, real-world 1/ f� spectra must eventually fall off
faster than 1/ f� above some threshold frequency; either they
roll over to a steeper power-law slope, or they transition to a
non-power-law upper tail. Often little can be known about
the high-frequency truncation of such spectra, because it of-
ten occurs well above the sampling frequency. True 1/ f�

noises can exist for ��1, and for such noises the aliasing
terms in Eq. �14� will converge. As Eq. �14� suggests, the
severity of aliasing in 1/ f� noise spectra will depend on the
value of � and the transition frequency �if any� at which the
spectrum steepens beyond �=1.

To illustrate the effects of aliasing on power-law noise
spectra �Fig. 3�, I generated artificial 1 / f� noises using the
straightforward procedure �13�,

y�tj� = �
k=1

m

�kf0�−�/2 sin�2�kf0tj + 
k�, tj = j/fs, j = 1,…,n ,

�15�

where �=0.5 for Fig. 3, fs is the sampling frequency, f0 is
the fundamental frequency �set equal to the reciprocal of the
length of the series to be simulated�, and 
k is a random
phase that takes on a different random value �0	
k�2��
for each of the m frequency components. Equation �15�, like
most methods for generating colored noise, effectively trun-
cates the spectrum at the highest frequency component fmax
=mf0, as it generates no fluctuations at higher frequencies.
Thus the choice of m determines the highest frequency com-
ponent in the synthetic noise.

If the cutoff frequency fmax is half the sampling frequency
fs or less, the Nyquist sampling theorem is satisfied and
spectral analysis yields exactly the 1/ f� spectrum used to
generate the synthetic noise in the first place. By contrast, if
the cutoff frequency equals the sampling frequency, every
frequency component 0	 f 	 fN, with spectral power S0f−�,
will be accompanied by one alias from the counterpart fre-
quency fs− f , with spectral power S0�fs− f�−�. The spectral
power of the time series at each frequency f will be, from
Eq. �10�,

SY�f� = SX�f� + SX�fs − f� + 2�SX�f�SX�fs − f� cos �

= S0�f−� + �fs − f�−� + 2f−�/2�fs − f�−�/2 cos �� ,

�16�

where � is the �random� phase angle between each frequency
component and its alias. As � varies randomly, the spectral
power of the time series fluctuates within the envelope

FIG. 2. Aliasing illustrated in the frequency domain. The true
power spectrum for a continuous function is shown by the thin
black line. Sampling this continuous function at a sampling fre-
quency fs, creates aliases of the true spectrum, shown by dotted
lines, centered at ±fs, ±2fs, ±3fs, etc. Spectral power is typically
calculated within the frequency range 0� f � fN �where fN=0.5fs is
the Nyquist frequency�, indicated by the broad shaded band. �a� If
the true spectrum has no significant power at frequencies above fN,
measures of power at frequencies less than fN will reflect the true
power spectrum. �b� If the true spectrum has significant power at
frequencies up to fs, frequencies in the range fN� f � fs will be
aliased into the range 0� f � fN. For noise spectra �in which the
aliases and the true signal at any frequency will be randomly phase-
shifted relative to one another�, the measured spectral power at any
frequency f will be the sum of the true signal and the aliases at that
frequency. This sum is shown by the heavy dashed curve and is
highlighted by the thick black line over the range that the spectrum
would normally be measured. �c� If the true spectrum has signifi-
cant power at frequencies above fs, multiple aliases will be super-
imposed on all frequencies 0� f � fN. The measured spectrum will
be affected by aliasing over its entire frequency range, and aliased
power will exceed the true power at the Nyquist frequency.
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shown in Fig. 3�a�. The average spectral power, averaged
over the fluctuations in �, is described by

E„SY�f�… = SX�f� + SX�fs − f� = S0�f−� + �fs − f�−�� .

�17�

As Eq. �17� predicts, and Fig. 3�b� demonstrates, the average
spectral power deviates systematically from the unaliased
spectrum. At the Nyquist frequency fN=0.5fs, aliasing
doubles the average spectral power, E(SY�fN�)=SX�fN�
+SX�fs− fN�=2SX�fN�. Aliasing systematically elevates the
average spectral power above the unaliased spectrum, and
the size of the deviation increases with frequency.

If the cutoff frequency fmax is a large multiple of the sam-
pling frequency, many overlapping aliases are superimposed
on the true signal, resulting in large scatter in the power
spectrum �Fig. 3�c��. In such cases, aliasing will distort the
spectral power over a wide range of frequencies. In Fig. 3�d�,
for example, fmax=8fs and aliasing significantly inflates the
spectral power at frequencies over two orders of magnitude
below the Nyquist frequency. Equation �13� correctly pre-
dicts how aliasing distorts the average power spectrum of the
discretely sampled synthetic noise series, as Fig. 3�d� illus-
trates.

As Fig. 3 shows, aliasing inflates the spectral power most
at the highest frequencies. As a result, log-log regressions

FIG. 3. Effects of undersampling on power spectra of synthetic power-law noises. Spectra of synthetic power-law noises �gray lines�
deviate systematically from the theoretical spectra from which they were generated �straight black lines, SX�f�
1/ f0.5� when time series are
undersampled, i.e., the highest frequency in the sampled process �fmax� is greater than the Nyquist frequency of the sampling �fN=0.5fs�.
Left-hand panels �a� and �c� show unsmoothed spectra of synthetic power-law noises composed of 214=16 384 points. Right-hand panels �b�
and �d� show spectra after smoothing by taking weighted averages of spectral power over a Gaussian smoothing window with a scale factor
of 0.05 log units. Scaling the smoothing window logarithmically means that at higher frequencies, more points are averaged together and
thus the average spectrum is more precisely defined. If the noise process is undersampled by only twofold �top panels�, each frequency f has
only one alias, at frequency fs− f . In this case �see panel �a�� the spectral power forms an envelope between an upper limit of �X�f��2
+ �X�fs− f��2+2�X�f���X�fs− f�� and a lower limit of �X�f��2+ �X�fs− f��2−2�X�f���X�fs− f��, depending on whether the alias from frequency fs

− f is in phase or out of phase with the true signal at frequency f . Aliasing inflates the spectrum by an average amount SX�fs− f� �see panel
�b��, in agreement with Eq. �17�. Under more severe undersampling �bottom panels�, the random variation in the power spectrum is larger
and more widespread �panel �c��. The average spectral power is elevated above the true 1/ f0.5 spectrum across a wide range of frequencies
�panel �d��, in agreement with Eq. �13�.
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from spectral plots like Figs. 3�b� and 3�d� will produce ar-
tifactually low estimates of the power-law slope �. The ef-
fect of aliasing on the regression slope is particularly strong
because on log-log axes, most of the data points are clustered
at the high-frequency end of the spectrum, where the artifi-
cial flattening of the spectrum by aliasing is most severe. As
examples of the distortions that aliasing can produce, the
log-log regression slopes of the smoothed spectra in Figs.
3�b� and 3�d� are 0.347±0.0016 and 0.166±0.003, respec-
tively. In both cases the regression slopes deviate from the
true value of �=0.5 by about 100 times their standard errors,
owing to the large bias introduced by aliasing.

Using Eq. �13� to estimate the expected aliased power
spectrum for a range of scaling exponents � and cutoff fre-
quencies fmax, I calculated the apparent scaling exponent that
would be obtained from least-squares regression in spectral
plots. As Fig. 4�a� shows, aliasing can severely distort esti-
mates of the scaling exponent �, even for time series that are
only modestly undersampled �that is, even when the highest
frequency in the noise is only a small multiple of the Nyquist
frequency�. Even modest undersampling can lead to mea-
surements of spectral power at the Nyquist frequency that

exceed the true spectral power by large multiples �Fig. 4�b��.
In undersampled power-law noises, a significant fraction of
the total variance �Fig. 4�c��—and thus a significant fraction
of the total spectral power and the information content—will
consist of aliases rather than real signals.

IV. CORRECTING FOR ALIASING BY FILTERING

Because aliasing introduces severe distortions in the
power spectra of power-law noises, it would be desirable to
correct for the effects of aliasing and retrieve, as nearly as
possible, the underlying unaliased spectrum. In practice, one
will only have the sampled values y�tj� and their power spec-
trum SY�f� to work with; neither the continuous function x�t�
nor its power spectrum SX�f� will be directly observable.
Equation �13� above shows that if the true power spectrum
SX�f� were known, the aliased spectrum SY�f� could be cal-
culated directly. But SX�f� is not known, and thus one faces
an ill-posed inverse problem: given the measured power
spectrum SY�f�, which includes some degree of aliasing, how
can one recover the best possible estimate of SX�f�?

FIG. 4. Effects of aliasing on power spectra of 1 / f� noises. �a� Apparent �, as indicated by the log-log slopes of power spectra measured
over a frequency range of three orders of magnitude �0.001fN to fN�. �b� Inflation of measured power at the Nyquist frequency fN. �c�
Variance due to aliases, as a fraction of the total variance in the measured time series �estimated as the integral of spectral power from
0.001fN to fN�. Curves are shown for 1 / f� noises ranging from �=0.2 to �=1.0. Dotted lines show log-log slopes �panel �a�� and power
levels �panel �b�� that would be measured in the absence of aliasing. At left edge of the plots, the maximum frequency in the noise equals
the Nyquist frequency and aliasing does not occur. As the maximum frequency in the 1/ f� noise becomes a large multiple of the sampling
frequency, the power levels �a� and log-log slopes �b� of the measured spectra become highly distorted, and aliases comprise a significant
fraction of the total variance �c� in the sampled time series.
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Here I propose a filtering approach to this problem. The
approach is conceptually similar to Wiener filtering �14–16�,
but with several key differences as detailed below. A com-
puter code that implements this filtering procedure is pre-
sented in Ref. �17�.

The Fourier transform Y�f� of the discrete measurements
y�tj� can be considered as the sum of the signal X�f�, which
one would like to approximate as closely as possible, and the
noise due to aliasing �see Eq. �9��, which one would like to
filter out. The task is to find a real-valued frequency-domain
filter ��f� which, when multiplied by the alias-corrupted

Fourier transform Y�f�, yields the best possible estimate X̂�f�
for the Fourier transform of the �unknown� continuous func-
tion x�t�,

X̂�f� = ��f�Y�f� . �18�

Because X̂�f� will primarily be used for power-spectrum
scaling analyses, the expected value of its spectral power
SX̂�f� should conform as closely as possible to the true �and
unknown� SX�f�. Combining Eqs. �18� and �13�, one can di-
rectly obtain

E„SX̂�f�… = „��f�…2E„SY�f�…

= „��f�…2�SX�f� + �
k=1

�

SX�kfs − f� + SX�kfs + f�	

 SX�f� . �19�

Here one sees the first difference with Wiener filtering ap-
proaches, for which the objective is to minimize the devia-
tion between x̂�t� and x�t�, rather than between SX̂�f� and
SX�f�. Equation �19� directly yields an estimate for the filter
��f�,

��f� =� SX�f�

SX�f� + �
k=1

�

SX�kfs − f� + SX�kfs + f�

, �20�

which can be seen to be the square root of the Wiener filter
�the ratio of signal power to signal-plus-noise power�.

At first glance, it does not appear that Eq. �20� is particu-
larly helpful; it proposes that in order to obtain an estimate
SX̂�f� for the unknown SX�f�, one needs to know SX�f� itself,
including all its aliases. However, one can estimate ��f� in a
similar fashion to a Wiener filter, by modeling the signal and
its aliases, and estimating ��f� from the ratio of the modeled
signal power to the modeled signal-plus-alias power.
Whereas a Wiener filter requires specifying the signal and
noise spectra individually, in the present case the signal and
noise �i.e., aliases� arise from the same spectrum; thus imple-
menting Eq. �20� requires only a single spectral model for
SX�f�. As with a Wiener filter, the filter estimate provided by
Eq. �20� can be useful even if the underlying spectral model
is inexact. The approach used here is to estimate a spectral
model for SX�f�, such that this model plus its aliases,

SYmodel
�f� = SXmodel

�f� + �
k=1

�

SXmodel
�kfs − f�

+ SXmodel
�kfs + f� , �21�

is a reasonable approximation to the measured spectrum
SY�f�. One then estimates the alias filter ��f� as

��f� =�SXmodel
�f�

SYmodel
�f�

, �22�

and estimates the alias-filtered spectrum as

SX̂�f� = ��f�2SY�f� =
SXmodel

�f�

SYmodel
�f�

SY�f� . �23�

Here I illustrate this approach with environmental moni-
toring data from a long-term watershed study in Wales �18�.
This study has monitored many chemical constituents in
rainfall and streamflow, including chloride, a natural hydro-
logical tracer. Watersheds have recently been shown to act as
fractal filters, converting white-noise rainfall chloride spectra
into fractal 1 / f�-noise streamflow chloride spectra �19�. This
fractal filtering behavior has important implications for con-
taminant transport �19,20�, and several physical mechanisms
have been proposed to explain it �21–24�.

Detecting this fractal filtering phenomenon requires accu-
rately measuring the power spectra of tracer concentrations
in streamflow, but streamflow chemistry is only measured
weekly in typical monitoring programs, raising the possibil-
ity of significant aliasing of higher-frequency fluctuations.
The Welsh watershed study is unique worldwide, in that it
includes 3 years of daily measurements of chloride concen-
trations, and thus allows a direct assessment of the aliasing
that can result from weekly sampling. Figures 5�a� and 5�b�
show three-year time series of chloride concentrations in one
of the Welsh study streams, sampled at weekly and daily
intervals, respectively. The weekly measurements of chloride
concentrations appear to exhibit 1 / f0.5 scaling �Fig. 5�c��,
whereas daily measurements over the same time span exhibit
clear 1 / f1.0 scaling �Fig. 5�d��. The daily measurements
clearly demonstrate that the chloride fluctuations have sig-
nificant spectral power above the Nyquist frequency for the
weekly sampling, implying that the 1/ f0.5 scaling observed
in the weekly data may be an artifact of spectral aliasing.
Thus the problem at hand is whether, if one only had the
weekly data, one could filter out the spectral effects of alias-
ing and correctly infer the 1/ f1.0 scaling exhibited by this
stream.

Estimating the alias filter requires a model for the spec-
trum, so that the ratio of the signal power and the signal-
plus-alias power can be estimated. I used a simple spectral
model,

SXmodel
�f� =

S0f−�

1 + �f/fc�2 
�S0f−�, f 
 fc,

S0fc
2f−��+2�, f � fc,

� �24�

as input to Eqs. �21�–�23�. This model spectrum scales as
1 / f� below some specified corner frequency fc, then rolls
over to a steeper spectral slope of 1 / f�+2 at higher frequen-
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cies. This steeper high-frequency tail roughly approximates
the high-frequency damping that must occur as a result of
dispersion; mathematically, it guarantees that the summation
in Eq. �21� will converge for all ��−1, including white
noise ��=0� and all of the conventional 1 / f� noises ��
�0�. In practice, without high-frequency sampling, little can
be known about the high-frequency tail of the spectrum. For-
tunately, the form of the high-frequency tail has little effect
on the alias-filtered spectrum, as long as the transition to that

high-frequency tail occurs well above the sampling fre-
quency fs.

This spectral model has three parameters, �, fc, and S0.
The scale factor S0 divides by itself in the alias filter �Eq.
�22��, and thus has no effect on the alias-filtered spectrum.
The corner frequency fc must typically be specified a priori,
since unless fc is well below the Nyquist frequency, the spec-
tral roll-over in Eq. �21� will not be directly observable.
Typically it will be possible to estimate fc from simple physi-

FIG. 5. Alias filtering applied to concentration fluctuations of chloride in streamflow at Plynlimon, Wales. Weekly measurements of
chloride concentrations �a� appear to exhibit 1 / f0.5 scaling �c�, whereas daily measurements �b� over the same time span exhibit clear 1 / f1.0

scaling �d�. �e� Illustration of alias filtering �axes are expanded to show detail�. A power-law model �Eq. �21��, including its aliases �dotted
gray curve� is fitted to the smoothed spectrum of the weekly measurements �solid gray curve�. The alias-filtered spectrum �solid black curve�
is calculated from the measured spectrum by multiplying by the ratio of the power-law model with and without aliases �gray and black
dashed lines�. �f� Alias-filtered spectra for the weekly and daily data show consistent spectral scaling. In comparing panels �a� and �b�, note
that the data sets do not exactly coincide because the weekly samples are taken at a different time of day than the daily measurements; thus
they are not an exact subset of the daily data.
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cal arguments; in this particular case, one can argue that the
spectrum should fall off steeply at some time scale ranging
from the duration of a typical storm �on the order of 1 day�
and the hydrologic response time of the watershed �on the
order of several hours�; in Fig. 5, fc is assumed to be
365/year �i.e., 1 /day�. In any case, as long as the corner
frequency fc is substantially above the sampling frequency
fs, the exact value of fc will have little effect on the alias-
filtered spectrum.

The scaling exponent � is estimated by a nonlinear fitting
procedure, which finds the value of � for which the signal-
plus-alias spectrum SY model�f� from Eq. �21� matches the
measured spectrum SY�f� as closely as possible; that is, it
minimizes the mean-square deviation of log�SY model�f��
from log�SY�f��. Figure 5�e� demonstrates the fitting proce-
dure applied to the weekly chloride concentrations. In this
case, the best-fit value of � is 1.01, for which the modeled
signal-plus-alias spectrum �the gray dashed line� matches the
measured spectrum �the gray solid line� as closely as pos-
sible. One can see from the form of Eq. �23� that on a loga-
rithmic scale, the filtering procedure is equivalent to shifting
the measured spectrum �the gray solid line� downward by the
difference between the modeled spectrum and the modeled
signal-plus-alias spectrum �the gray and black dashed lines�.
The alias-filtered spectrum �the black solid line� exhibits
1 / f1.0 scaling, consistent with the scaling behavior expected
from the daily measurements �Fig. 5�d��. The spectrum of the
daily measurements can also be alias-filtered by the same
procedure; the alias-filtered daily and weekly spectra exhibit
the same scaling behavior, and coincide almost exactly �Fig.
5�f��.

As with a Wiener filter, the alias filter �Eq. �22�� can per-
form well even if the spectral model �Eq. �24�� is imprecise.
For example, changing the corner frequency fc from
365/year �i.e., 1 /day� to 8760/year �i.e., 1 /hour� would
change the best-fit value of � in Fig. 5�e� by only 7%, from
1.01 to 1.08, with almost no discernable effect on the alias-
filtered spectrum. As an extreme example of mis-
specification of the spectral model, consider the black dashed
line in Fig. 6�a�, which shows the signal-plus-alias spectrum
for the spectral model of Eq. �24� with � fixed at �=0.5
�rather than the best-fit value of �=1.01, which would yield
the gray dashed line�. The signal-plus-alias spectrum for this
mis-specified spectral model does not correspond closely to
the measured spectrum �the gray solid line�. Nevertheless,
the alias-filtered spectrum that is derived from this mis-
specified model �black solid line, Fig. 6�b�� exhibits almost
exactly the same scaling as the alias-filtered spectrum de-
rived from the best-fit value of � �gray solid line, Fig. 6�b��.
Power-law fits to the two alias-filtered spectra yield almost
the same log-log slopes �0.98 versus 1.01�. Because the spec-
tral filter ��f� is based on the ratio of the model spectrum to
the model signal-plus-alias spectrum, it removes the �propor-
tional� effect of the modeled aliasing, rather than forcing the
alias-filtered spectrum to conform to the model spectrum.
Thus mis-specification of the model spectrum has only a
small effect on the results of the alias filtering procedure.

As a second illustration of this alias filtering procedure,
consider the streamflow spectra shown in Fig. 7. Figures 7�a�

and 7�b� show excerpts from a 28-year streamflow time se-
ries, sampled at daily and hourly intervals, for the same
Welsh study stream shown in Fig. 5. The 28-year record of
daily instantaneous streamflows for this site appears to ex-
hibit 1 / f0.40 scaling over the frequency range
3/year–182/year �Fig. 7�c��, whereas streamflows sampled
hourly over the same period exhibit clear 1 / f0.67 scaling over
the same range of frequencies �Fig. 7�d��. The hourly spec-
trum also reveals an upper bound to the power-law scaling
regime, rolling off at frequencies above roughly 200/year.

Can the alias-filtering technique outlined above correct
for the effects of aliasing in the spectrum of the daily flow
data, even though the power-law scaling extends only across
a limited range, as one can see from the hourly data? Assum-
ing, as before, a corner frequency fc of 365/year, and mini-
mizing the mean-square deviation of log�SY model�f�� from
log�SY�f�� over the frequency range 3/year–182/year, yields

FIG. 6. Alias filtering with a mis-specified model spectrum, il-
lustrated with the weekly chloride spectrum of Fig. 5. �a� Specify-
ing a model spectrum �Eq. �24�� with a scaling exponent of �
=0.5 rather than the best-fit value of �=1.01 yields a modeled
signal-plus-alias spectrum �dashed black line� that clearly deviates
from the spectrum of the weekly chloride measurements �solid gray
line�; the best-fit signal-plus-alias model �dashed gray line� is
shown for comparison. �b� Nevertheless, the mis-specified model
yields an alias-filtered spectrum �solid black line� whose scaling
behavior is almost exactly the same as that derived from the best-fit
model �solid gray line�.
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a best-fit value of �=0.59 �gray dashed line in Fig. 7�e��. The
alias-filtered spectrum �black solid line in Fig. 7�e�� exhibits
1 / f0.66 scaling, consistent with the 1/ f0.67 scaling observed
over this frequency range in the hourly data. The alias-
filtered spectrum of the daily data is almost visually indistin-
guishable from the spectrum of the hourly data �solid black
and gray lines in Fig. 7�f��, whereas the unfiltered daily spec-
trum �dotted line in Fig. 7�f�� deviates significantly from the
spectrum of the hourly data.

As in the previous example, the alias filter �Eq. �22�� can
perform well even if the spectral model �Eq. �24�� is inaccu-

rately specified. For example, Fig. 8�a� shows two different
spectral models for the daily streamflow data. The best-fit
value of �=0.59 yields a modeled signal-plus-alias spectrum
�the dashed gray line� that corresponds closely to the mea-
sured spectrum of the daily data over the frequency range
3/year–182/year. Fixing � at �=1, however, yields a
signal-plus-alias spectrum �the dashed black line� that does
not resemble the spectrum of the daily data. Nevertheless,
when these two spectral models are used in the alias filter
�Eq. �23��, they yield almost identical alias-filtered spectra

FIG. 7. Alias filtering applied to stream discharge records at Plynlimon, Wales. Daily �a� and hourly �b� streamflow records are similar,
with the hourly records showing more fine detail �records for 1985 are shown as an example�. Daily instantaneous flows appear to exhibit
1 / f0.40 scaling �c� between frequencies of 3 /year and 183/year�=0.5/day�, whereas hourly measurements exhibit clear 1 / f0.67 scaling �d�
over the same frequency range. Alias-filtering �e� is achieved by fitting a power-law model �Eq. �21��, including its aliases �dashed gray
curve�, to the smoothed spectrum of weekly measurements �solid gray curve�. The alias-filtered spectrum �solid black curve� is derived by
multiplying the measured spectral power �solid gray curve� by the alias filter, formed from the ratio of the modeled spectra with and without
aliases �dashed gray line and dashed black line�. After alias-filtering, the daily and hourly spectra show consistent spectral scaling �f�,
whereas the unfiltered daily spectrum diverges from the hourly spectrum.
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�Fig. 8�b�� with almost identical log-log slopes of 0.65 and
0.66.

Unlike the previous example, however, in this case the
value of the corner frequency fc has a significant effect on
the alias-filtered spectrum. For example, changing the corner
frequency fc from 365/year �i.e., 1 /day� to 8760/year �i.e.,
1 /hour� changes the best-fit value of � in Fig. 7�e� from �
=0.59 to �=0.88, and changes the average log-log slope of
the alias-filtered spectrum from 0.66 to 0.89. In this case, the
corner frequency fc affects the alias-filtered spectrum be-
cause the hourly streamflow data exhibit a spectral roll-over
near the sampling frequency fs=365/year of the daily mea-
surements; this roll-over must be modeled correctly, in order
to estimate the right ratio of alias power to signal power near
the Nyquist frequency. In the previous example, the spectral
roll-over occurred well above the sampling frequency, and
thus had little effect on the spectral power that was aliased
into the Nyquist interval.

V. EFFECTS OF TIME-AVERAGED
SAMPLING ON ALIASING

Another strategy for avoiding spectral aliasing is to
analog-filter the signal before sampling, such that the filtered
signal has insignificant power above the Nyquist frequency.
A form of analog filtering is automatically performed when-
ever one makes time-averaged measurements. Some mea-
surements of natural systems are intrinsically time averaged.
For example, measurements of rainfall rates are often de-
rived from the total volume of rain captured during a finite
sampling interval, and thus are inherently time-averaged
over that sampling interval. Time-averaged sampling damps
fluctuations at frequencies that are near, or above, the sam-
pling frequency �Fig. 9�, and thus tends to suppress aliasing
of high-frequency components of the signal.

Time-averaged sampling can be viewed as discrete sam-
pling of the continuous running mean of the signal �dotted
lines in Fig. 9�, where that running mean is averaged over a
time interval equal to the reciprocal of the sampling fre-
quency,

xavg�t� = fs�
t−1/fs

t

x�t��dt�. �25�

Since the running mean, xavg�t�, is formally the convolution
of the continuous signal x�t� with a boxcar function of height
fs and width 1/ fs, the power spectrum of xavg�t� can be found
straightforwardly by multiplying the power spectra of x�t�
and the boxcar function �11�,

SXavg
�f� = SX�f�� sin��f/fs�

�f/fs
	2

= SX�f�sinc2�f/fs� . �26�

For frequencies f 
 fs, sinc2�f / fs�
1, so time averaging has
little effect on the power spectrum. At the Nyquist frequency,
sinc2�f / fs�=4/�2, and time-averaging reduces the spectral
power by slightly more than half. At frequencies well above
the Nyquist frequency, sinc2�f / fs� oscillates between
fs

2 / ��2f2� and zero, with an average value of fs
2 / �2�2f2�.

Thus time-averaged sampling strongly depresses the spectral
power at frequencies above the Nyquist frequency, and there-
fore greatly reduces aliasing of undersampled signals.

In practice one will not know the continuous running
mean xavg�t�; one will only know its value at discrete, evenly
spaced points. As before, the power spectrum of this dis-
cretely sampled time series yavg�tj� will depend on the con-
volution of the continuous function xavg�t� with the comb
distribution III�t�,

Yavg�f� = �
−�

�

xavg�t�III�t�e−i2�ftdt . �27�

Following the outline of Eqs. �3�–�13�, one can show that the
expected spectral power of the discrete sample of time-
averaged measurements is

FIG. 8. Alias filtering with a mis-specified model spectrum, il-
lustrated with the daily streamflow spectrum of Fig. 7. �a� Specify-
ing a model spectrum �Eq. �24�� with a scaling exponent of �=1
rather than the best-fit value of �=0.59 yields a modeled signal-
plus-alias spectrum �dashed black line� that clearly deviates from
the spectrum of the daily streamflow measurements �solid gray
line�; the best-fit signal-plus-alias model �dashed gray line� is
shown for comparison. �b� Nevertheless, the mis-specified model
yields an alias-filtered spectrum �solid black line� whose scaling
behavior is almost exactly the same as that derived from the best-fit
model �solid gray line�.
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�28�

FIG. 9. Reduction of aliasing by time-averaging before sampling. Thin lines indicate unfiltered signals. Dotted lines indicate moving
averages over an interval of �t; these moving averages lag the signal that they are averaging. Dots indicate averages sampled at the sampling
interval �t, and gray lines indicate the signal that would be inferred from the sampled averages. �a� The signal inferred from the sampled
averages is slightly damped and phase-lagged relative to the true signal, at frequencies below the Nyquist frequency fN=0.5fs. �b�, �c�
Frequency components above the Nyquist frequency are more strongly damped by averaging, and thus their aliases, shown by the gray
curves, are much smaller than they would be under point sampling �compare Fig. 1�. �d� Thus averages of a complex waveform will
primarily reflect the lower-frequency components, and will reduce aliasing of the frequency components that lie above the Nyquist fre-
quency. The averages in panel �d� yield an inferred signal that resembles the true signal at that frequency �panel �a��, whereas point sampling
�see Fig. 1�d�� does not suppress the aliases and leads to an inflated estimate of signal strength.
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As Figs. 10�b� and 10�d� show, Eq. �28� accurately predicts
the average power spectrum of synthetic power-law noise
under the combined effects of aliasing and time-averaged
sampling. Time-averaged sampling depresses the spectral
power near and above the Nyquist frequency. This reduction
in spectral power is partly offset by aliasing of the time-
averaged signal. The net result is that spectra estimated from
time-averaged sampling can closely approximate the true
power-law noise spectrum, even if the signal is severely un-
dersampled.

Figure 11 shows that the combined effects of aliasing and
time-averaged sampling lead to a small but systematic over-
estimate of the log-log slopes of measured spectra of1 / f�

noises. This distortion in the measured spectrum becomes

worse in the absence of aliasing because, as described above,
time-averaging reduces the measured spectral power near
and above the Nyquist frequency, thus steepening the spec-
tral slope; aliasing partially offsets this loss of spectral
power. A comparison of Fig. 11 and Fig. 4 shows that time-
averaged sampling sharply reduces the spectral artifacts that
are generated by aliasing of undersampled signals �note the
100-fold difference in the scale of Fig. 11�b� compared to
Fig. 4�b��.

The methods outlined in the preceding section can be
used to filter a spectrum that has been distorted by aliasing
and time-averaged sampling, thus recovering the best pos-
sible estimate of the undistorted spectrum. One simply uses
Eq. �28� in place of Eq. �21� to estimate the effects of alias-

FIG. 10. Effects of time-averaged sampling on power spectra of synthetic power-law noises. The gray line is the spectrum of synthetic
noise generated, as in Fig. 3, from an ideal 1 / f0.5 spectrum over a frequency range that extends to the sampling frequency fmax= fs, top
panels� or 8 times the sampling frequency �fmax=8fs, bottom panels�. The gray lines in the left-hand panels are unsmoothed spectra; those
in the right-hand panels �with axes expanded to show detail� are smoothed by averaging over 10 adjacent frequencies. The dotted black lines
show the ideal 1 / f0.5 spectrum with the damping of high-frequency fluctuations that would be expected from time-averaged sampling �Eq.
�26��, in the absence of aliasing. The dashed black lines in the right-hand panels show the theoretical spectra that would result from the
combined effects of time-averaged sampling and aliasing �Eq. �28��; these correspond closely to the average spectral power of the synthetic
noise �gray line�. Note that, in comparison to Fig. 3, time-averaged sampling greatly reduces the scatter in the measured power spectrum
�left-hand panels� that arises from aliasing of high-frequency noise components. As a result, aliasing has very little effect on the spectrum
below roughly f =0.1fs, even when the signal is severely undersampled �panel �c��. Time averaging leads to damping of the expected
spectrum �dashed black line� near the Nyquist frequency fN=0.5fs; this is partly offset by aliasing of higher-frequency components of the
signal. As a result, the average spectral power of the synthetic noise �solid black line in left-hand panels, gray line in right-hand panels�
closely approximates the ideal 1 / f0.5 spectrum.
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ing and time averaging on the model spectrum, then uses Eq.
�23� to estimate the required spectral filter. The computer
code in Ref. �17� includes an implementation of this proce-
dure.

VI. DISCUSSION

It is important to recognize that the spectral distortions
introduced by aliasing are systematic biases rather than ran-
dom uncertainties. Thus it is no help to simply collect more
data by sampling over longer spans of time. Only sampling
at higher frequencies—specifically, at frequencies higher
than twice the highest frequency component of the noise
process—will eliminate spectral aliasing once and for all.
Practical guides to time-series analysis �e.g., Ref. �25�� often
recommend a “real-world sampling rate” five times higher
than the sampling frequency specified by the Nyquist sam-
pling theorem.

That kind of advice is often difficult to implement in prac-
tice. In many cases, the cutoff frequency of the noise process
of interest is simply unknown, or is higher than any feasible
sampling frequency. In other cases, such as long-term envi-
ronmental time series, one has no choice but to work with
whatever data have already been collected, at whatever sam-
pling frequency has been used. These practical constraints
imply that in many cases, it will not be possible to eliminate
spectral aliasing through high-frequency sampling. In these
cases, it will be necessary to filter the distortions introduced
by aliasing, in order to recover the underlying noise spec-
trum as accurately as possible.

The degree to which aliasing can distort power-law noise
spectra has remained largely unrecognized. Aliasing has
most often been recognized as a problem when spectral
peaks above the Nyquist frequency create spurious spectral
peaks below the Nyquist frequency �e.g., Ref. �26��. By con-

trast, the potential for aliasing to distort 1 / f� noises and
other broad-band spectra has mostly gone unnoticed �but for
an exception see Ref. �8��, even though many of the 1/ f�

spectra reported in the literature become flatter at their high-
frequency ends, just as one would expect from aliasing �see
Fig. 3�.

It has long been recognized that aliasing can, in principle,
be suppressed by sampling the signal at unevenly spaced
points in time �e.g, Refs. �27,28��. However, uneven sam-
pling does not eliminate aliased spectral power, but instead
simply distributes its effects over a broader range of frequen-
cies than if the signal were evenly sampled �29�. Therefore,
while uneven sampling can be effective in suppressing the
aliasing of strong spectral peaks from periodic signals, it
appears unlikely to be effective in suppressing the aliasing of
broad-band noise spectra like those considered here. It is also
worth noting that many real-world “unevenly sampled” time
series are just evenly sampled time series with gaps where
one or more samples have been missed. These gapped time
series will be vulnerable to aliasing for the same reasons that
evenly sampled time series are.

Nor is aliasing likely to be suppressed by wavelet-based
spectral estimation methods. As Fig. 1 illustrates, aliasing
arises because of the loss of information in an undersampled
time series, relative to the continuous-time behavior that it
tries to represent. This loss of information is inherent in the
sampled data; it is not an algorithmic problem and does not
have an algorithmic solution.

The results reported here show that aliasing can result in
large systematic biases in scaling exponents estimated from
1/ f� spectra �Fig. 4�. These results contradict published stud-
ies that imply that spectral methods accurately measure the
scaling exponents � of synthetic 1 / f� noises �30,31�. The
synthetic 1 / f� noises used in those studies exhibited 1/ f�

scaling only up to the Nyquist frequency, where their spectral

FIG. 11. Effects of aliasing and time-averaging on power spectra of 1 / f� noises that are time averaged �over the sampling interval� before
sampling �compare with Fig. 4�. �a� Apparent �, as indicated by the log-log slopes of power spectra measured over a frequency range of three
orders of magnitude �0.001fN to fN�. �b� Reduction in measured power at the Nyquist frequency fN; note that vertical axis is expanded
100-fold compared to Fig. 4�b�. Curves are shown for 1 / f� noises ranging from �=0.2 to �=1.0; labels on curves indicate true � values
�also shown as dotted lines in panel �a��. At left edge of the plots, the maximum frequency in the noise equals the Nyquist frequency and
aliasing does not occur, but time-averaging reduces the high-frequency spectral power �to 40.5% of true power at fN�, and consequently
steepens the measured log-log slope. As the maximum frequency in the 1/ f� noise becomes a large multiple of the sampling frequency,
aliasing inflates the high-frequency power and thus partly offsets the effects of time averaging, and thus the log-log slopes of the measured
spectra come closer to the true � values.
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power dropped discontinuously to zero, as a consequence of
the way they were synthesized. Aliasing was thus prevented
because the synthetic 1 / f� noises were band limited to ex-
actly the Nyquist frequency. This lucky coincidence is un-
likely to arise in real-world data. The numerical experiments
reported here show that synthetic 1 / f� noises that extend
above the Nyquist frequency—as real-world noises often
do—exhibit exactly the expected degree of aliasing. In real-
world time series, 1 / f� scaling below the Nyquist frequency
must be assumed to imply, unless there is evidence to the
contrary, that 1 / f� scaling continues above the Nyquist fre-
quency as well. If a measured power spectrum does not fall
steeply away toward zero as it approaches the Nyquist fre-
quency, this fact should be taken as prima facie evidence that
aliasing is present. Unless the signal can be analog-filtered in
the time domain before sampling, frequency-domain filtering
methods like those outlined here provide the only hope for
correcting the spectral distortions caused by aliasing in
broad-band noise signals.

It bears emphasizing that the alias filtering procedure de-
scribed here does not force the filtered spectrum to conform
to the spectral model SXmodel

�f� �e.g., Eq. �24�� that is used to
construct the filter. From Eq. �23� one can see that on loga-
rithmic axes, the filtered spectrum SX̂�f� will deviate exactly
as much from the signal model SXmodel

�f� as the measured
spectrum SY�f� does from the signal-plus-aliases model
SYmodel

�f�. The filtered spectrum will conform to the spectral
model only if the signal-plus-aliases model conforms closely
to the measured spectrum �which inherently contains both
the signal and its aliases�. Because the spectral filter pro-
posed here does not force the filtered spectrum to conform to
the spectral model, mis-specification of the spectral model
has relatively little effect on the results, as Figs. 6 and 8
illustrate.

It is important to remember that the strength of aliasing in
a broad-band noise spectrum is not an independent parameter
that can be tuned; instead, it is inherent in the form of the
spectrum and in the sampling frequency. Thus, for example,
while one might be tempted to say that the measured spec-
trum of the weekly chloride data shown in Fig. 5�c� is con-
sistent with a 1/ f0.5 spectrum with no aliasing, this interpre-
tation has no real-world relevance. One never measures the
spectrum of the signal alone; instead one always measures
the spectrum of the signal plus its aliases. For example, the
measured 1/ f0.5 spectrum shown in Fig. 5�c� could only rep-
resent a real-world 1/ f0.5 noise process if it were somehow
band-limited at exactly the Nyquist frequency. Instead, the
real-world system that generated this particular time series
exhibits significant fluctuations on time scales down to sev-
eral hours. All spectra measured on such undersampled time
series will be distorted by aliasing. For example, as Figs. 5�e�
and 5�f� show, the process behind the weekly chloride data
scales roughly as 1/ f1.0 rather than 1/ f0.5. Thus aliasing has

reduced the log-log slope of the spectrum in Fig. 5�c� by
roughly a factor of 2.

The spectral consequences of aliasing in 1/ f� noise spec-
tra are similar to those of additive white noise, such as would
be expected from quantization error or other random mea-
surement noise. The spectral power of measurement noise in
Fig. 5�c� is of order 0.1 �M2 yr, and thus is insignificant
compared to the aliased power, which is of order
10 �M2 year. Where additive white noise is a more signifi-
cant component of the measured spectrum, it can be incor-
porated in the filtering procedure by adding a constant term
to the signal-plus-aliases model SYmodel

�f�.
The severity of aliasing in 1/ f� noise spectra will vary

with the scaling exponent �. The larger the scaling exponent
�, the faster the spectral power will fall off with increasing
frequency, and the less high-frequency power will be avail-
able to be aliased. For example, for moderate degrees of
undersampling �fmax
20fN�, aliasing will flatten the log-log
slope of a 1/ f2.0 spectrum only about half as much as it will
flatten the log-log slope of a 1/ f1.0 spectrum. And of course
the 1/ f2.0 spectrum is twice as steep to begin with, so as a
percentage of the slope, the aliasing distortion is smaller still,
by another factor of 2. However, many 1/ f� noises of inter-
est in the real world have scaling exponents ��2 and even
��1, for which aliasing is expected to significantly distort
the measured spectral slope �Fig. 4�. For white or nearly
white noises ��
1�, the measured power below the Nyquist
frequency can be utterly dominated by aliased noise.

The clear implication of this analysis is that some of the
1/ f� noise spectra reported in the literature have been se-
verely distorted by aliasing, and that their apparent scaling
exponents �, calculated from their log-log spectral slopes,
underestimate their true � values, often by large factors. In
such cases, time-averaged sampling �or some other time-
domain low-pass analog filtering procedure� provides the
best defense against spectral aliasing. Where this is not pos-
sible, the frequency-domain alias filter presented here pro-
vides a method for correcting the distortions introduced by
spectral aliasing, and recovering unbiased estimates of the
broad-band spectra of 1 / f� noises.
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alias_filter.txt
function [alpha, filtered_pwr, model_pwr, aliased_pwr]=alias_filter(freq, pwr, fs, fc, f_limit, avgs);
%function alias_filter: Performs alias filtering of power spectrum, using power-law model
%Receives the following as arguments:
% freq -- vector of frequencies in power spectrum
% pwr -- vector of spectral power corresponding to frequencies "freq"
% fs -- sampling frequency
% fc -- corner frequency for 1/f^2 steepening of power spectrum
%   f_limit -- lower frequency limit for estimating misfit of model-plus-alias spectrum vs. measured power
% avgs -- flag for whether spectrum is derived from instantaneous point measurements (avgs<>1)
% or from measurements averaged over each sampling interval (avgs==1)
%Returns the following:
% alpha -- best-fit exponent of power-law model
% filtered_pwr -- vector of alias-filtered spectral power
% model_pwr -- vector of modeled spectral power
% aliased_pwr -- vector of modeled spectral power, plus aliases

log_pwr = log(pwr); %log of power
freq_mask = freq > f_limit; %creates frequency mask vector with 1's if freq is above lower bound for fitting

options = optimset('TolX', 0.0001);
alpha_upper_bound = 5;  %upper bound for alpha (can be changed)
if avgs == 1 
    alpha_lower_bound = -2.9;  %if measurements are time-averaged
else
    alpha_lower_bound = -0.9;  %if measurements are point samples
end
alpha = fminbnd(@misfit, alpha_lower_bound, alpha_upper_bound, ...
                   options, fs, fc, freq, log_pwr, freq_mask, avgs); %get best-fit alpha

[model_pwr, aliased_pwr, RMSE] = alias(alpha, fs, fc, freq, log_pwr, freq_mask, avgs); %recalculate 
spectra for best-fit alpha
filtered_pwr = pwr .* model_pwr ./ aliased_pwr; %perform the filtering here (equation 23)
%end of function alias_filter

function RMSE = misfit(alpha, fs, fc, freq, log_pwr, freq_mask, avgs);
%returns RMSE (Root Mean Square Error) value for misfit of model-plus-alias spectrum for specified alpha
[model_pwr, aliased_pwr, RMSE] = alias(alpha, fs, fc, freq, log_pwr, freq_mask, avgs);
%end of function misfit

function [model_pwr, aliased_pwr, RMSE] = alias(alpha, fs, fc, freq, log_pwr, freq_mask, avgs);
%calculates model spectrum plus aliases (equation 21), and RMSE deviation from real spectrum 
model_pwr = model(alpha, fs, fc, freq, avgs); %this is the model spectrum
aliased_pwr = model_pwr; %this is the start of the model-plus-alias spectrum
if avgs == 1    %if sampling is time-averaged, here's where we model its effect
    aliased_pwr = aliased_pwr .* sinc(freq ./ fs) .* sinc(freq ./ fs);  %equation 26
end
for k = 1:1:10 %loop through aliases, building up spectrum of model+aliases: equations 21 and 28
    alias = model(alpha, fs, fc, ((k*fs)-freq), avgs);

if avgs == 1    %if sampling is time-averaged, here's where we model its effect on aliases
        alias = alias .* sinc(((k*fs)-freq) ./ fs) .* sinc(((k*fs)-freq) ./ fs);  %equation 26

end
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    aliased_pwr = aliased_pwr + alias; %add alias
    alias = model(alpha, fs, fc, ((k*fs)+freq), avgs);

if avgs == 1    %if sampling is time-averaged, here's where we model its effect on aliases
        alias = alias .* sinc(((k*fs)+freq) ./ fs) .* sinc(((k*fs)+freq) ./ fs);  %equation 26

end
    aliased_pwr = aliased_pwr + alias; %add alias
end

%After 10 exact iterations, integrate from k=11 to k=infinity
%alias=integral(S(kfs-f) dk) for k=11 to k=infinity.
%This integration is done by a change of variables, such that z=(k*fs-f)^(-alpha-1) 
%and dk=-1/(alpha+1)fs z^(-(alpha+2)/(alpha+1)) dz.
%so the limits of integration are zo=(11*fs-f)^(-alpha-1) and z=0
%and the integrand is almost constant across the entire integral.
%For convenience we define beta=alpha+1.

%For time-averaged sampling, we take the mean of sin^2 over the (rapid) cycles in sinc, so that
%sinc(k*fs-f) is approximated by 1/(2*pi*(k*fs-f)/fs).  Then the entire effect of time-averaged 
%sampling is a redefinition of beta and of the leading constant for the integration.
if avgs == 1
    beta = alpha+3;
    const = 1/(2*(pi^2)*beta/fs);
else
    beta = alpha+1;
    const = 1/(beta*fs);
end

zo = (11*fs - freq).^(-beta);
dz = zo ./ 20;
for j=1:1:20
    aliased_pwr = aliased_pwr + const ./ ((j.*dz).^(2/beta) + 1/fc^2).*dz;
end

%now do the same thing over again for the (k*fs+f) aliases -- note the integral is the same, just
%the limits are (slightly) different
zo = (11*fs + freq).^(-beta);
dz = zo ./ 20;
for j=1:1:20
    aliased_pwr = aliased_pwr + const ./ ((j.*dz).^(2/beta) + 1/fc^2).*dz;
end

log_aliased = log(aliased_pwr);

% now calculate prefactor to rescale model+alias spectrum
% prefactor=difference of means in log space; minimizes RMSE deviations from log_pwr
prefactor = sum((log_pwr - log_aliased) .* freq_mask)/sum(freq_mask);

log_aliased = log_aliased + prefactor;
aliased_pwr = aliased_pwr * exp(prefactor);
model_pwr = model_pwr * exp(prefactor);

% now calculate RMSE deviation from measured spectrum, using frequency mask
RMSE = sqrt( sum( (log_aliased - log_pwr) .* (log_aliased - log_pwr) .* freq_mask ) ...
    / sum(freq_mask) );
%end of function alias
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function spectr = model(alpha, fs, fc, freq, avgs);
%calculates model spectrum for a specified set of frequencies 
    spectr = (freq .^ (-alpha)) ./ (1 + (freq .* freq) ./ (fc * fc));  %equation 24
%end of function model
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