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Abstract

Time series of chemical tracers in rainfall and streamflow can be used to probe the internal workings of catchments. We have
recently proposed that catchments act as fractal filters for inert chemical tracers like chloride, converting ‘white noise’ rainfall
chemistry inputs into fractal ‘1/f noise’ chemical time series in runoff [Nature 403 (2000) 524]. This implies that catchments
have long-tailed travel-time distributions, and thus retain soluble contaminants for unexpectedly long timespans. Here we show
that these long-tailed travel-time distributions, and the fractal tracer time series that they imply, can be generated by advection
and dispersion of spatially distributed rainfall inputs as they travel toward a channel. Tracer pulses that land close to the stream
reach it promptly, with relatively little dispersion. Tracer pulses that land farther upslope must travel farther to reach the stream,
and undergo more dispersion. The tracer signal in the stream will be the integral of the contributions from each point along the
length of the hillslope, with a peak at short lag times (reflecting tracers landing near the stream) and a long tail (reflecting tracers
landing farther from the stream). Here we integrate the advection—dispersion equation for rainfall tracers landing at all points on
a simple model hillslope, and show that it yields fractal tracer behavior, as well as a travel-time distribution nearly equivalent to
that found empirically [Nature 403 (2000) 524]. However, it does so only when the dispersion length scale approaches the
length of the hillslope, implying that subsurface transport is dominated by large conductivity contrasts related to macropores,
fracture networks, and similar large-scale heterogeneities in subsurface conductivity. Thus, the 1/f scaling observed at our study
sites indicates that these catchments are dominated by flowpaths that exhibit macro-dispersion over the longest possible length
scales. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The travel time of water through a catchment — i.e.
the time it takes for rainwater to travel to the stream-
controls the persistence of soluble contaminants, and
thus the downstream consequences of pollution
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episodes (Langmuir, 1997; Schnoor, 1996). A catch-
ment is characterized by a distribution of travel times,
reflecting the diverse flow paths that rainfall can take
to the stream. Quantifying this travel-time distribution
is essential to predicting the transport and fate of solu-
ble contaminants. Consider, for example, the down-
stream consequences of a brief contaminant pulse in
the rain falling on a catchment. If the catchment trans-
mits most of its rainfall promptly to the stream, then
the contaminant pulse in the stream will be brief, but it
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Table 1

83

Plynlimon study catchments. Catchment soils are classified as moorland (M), podzol (P) or gley (G); vegetation cover is classified as moorland

(M) or Sitka Spruce (SS)

Site Drainage area (km?) Soils Vegetation Felling history Records analyzed
Hafren 3.47 M/P/G M/SS Ongoing thinning Weekly 1983-97,
daily 1994-97
Tanllwyth 0.51 G SS 50%, 1996 Weekly 1991-97,
daily 1994-97
Hore 3.35 M/P/IG SS 50%, 1985-88 Weekly 1983-97
Upper Hore 1.78 M/P/G SS None Weekly 1985-97
South2 Hore 0.05 P SS 100%, 1989 Weekly 1988-97

will also be intense. Conversely, if the catchment’s
distribution of travel times is broad — for example,
if rainfall inputs are extensively mixed with large
volumes of pre-storm water stored in the subsurface
— then the contaminant flux that reaches the stream
will be much less intense, but it will also be much
more persistent. These two styles of contaminant
delivery may have very different ecological conse-
quences, depending on the characteristics of the
contaminant in question.

A catchment’s travel-time distribution is intimately
connected to its dominant flowpaths (McDonnell et
al., 1991). Thus, the travel-time distributions that
characterize catchments should help to clarify the
mechanisms that control flow routing in the subsur-
face. (Travel times through the channel network are
typically much faster than through the subsurface, so
channel network geometry should exert only second-
order control on the travel-time distribution.) The
timescales of transport and storage in catchments are
also important for predicting the extent to which rain-
fall inputs will be chemically modified by reactions
with catchment soils and bedrock (Burns et al., 1998).
However, despite the obvious importance of catch-
ment travel-time distributions for watershed hydrol-
ogy and geochemistry, they have rarely been
quantified. Tracer breakthrough curves have been
used to estimate travel times between specific tracer
injection points and catchment outlets (e.g. Nyberg et
al., 1999), and in at least one case, a travel-time distri-
bution has been estimated for a small experimental
catchment by manipulating the isotopic signature of
its entire precipitation input (Rodhe et al., 1996).
Natural fluctuations in chemical and isotopic tracers
have been widely used to estimate the ‘new water’ and
‘old water’ contributions in individual storm events

(e.g. Kendall et al., 1995; McDonnell et al., 1991;
Neal and Rosier, 1990; Sklash, 1990). However,
their potential for measuring catchment travel times
over longer timescales remains largely unexplored
(but for an exception, see Soulsby et al., 2000).

We have recently used natural fluctuations of
chloride concentrations in rainfall and streamflow to
estimate the travel-time distribution for the Hafren
catchment at Plynlimon, Wales (Kirchner et al.,
2000). Our analysis showed that chloride fluctuations
in streamflow were strongly damped relative to those
in rainfall, on all but the longest timescales, implying
that the catchment retains a long chemical memory of
the inert chloride tracer. The Hafren catchment acts as
a fractal filter, in which rainfall chloride fluctuations
with an approximate ‘white noise’ power spectrum
are converted into streamflow chloride fluctuations
with a fractal ‘1/f noise’ spectrum. In 1/f noise, the
spectral power of fluctuations (i.e. the square of their
amplitude) is inversely proportional to their frequency
— or, equivalently, is proportional to their wave-
length. Time series characterized by 1/f scaling there-
fore lack a characteristic timescale, because
fluctuations at any wavelength are embedded in
larger-amplitude fluctuations at longer wavelengths,
and these, in turn, are embedded in still larger fluctua-
tions on still longer timescales. Chloride fluctuations
in Hafren streamflow exhibit fractal 1/f scaling over
three orders of magnitude. This implies that the travel-
time distribution for the Hafren catchment is an
approximate power law, scaling as 7 > for travel
times 7 that are short compared to the mean travel
time 7.

Here, we extend our earlier analysis in two ways.
First, we show that the fractal scaling observed at the
Hafren catchment also characterizes four other
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Fig. 1. Time series of daily water fluxes and weekly chloride concentrations in rainfall (gray lines) and Hafren streamflow (black lines) at
Plynlimon, mid-Wales. Streamflow response to rainfall inputs is prompt, with little attenuation (a), whereas weekly fluctuations in streamflow
concentrations are damped significantly compared to rainfall (b). Seasonal fluctuations in rainfall concentrations vary greatly from year to year;
seasonal fluctuations in streamflow concentrations are much smaller (c). Even inter-annual fluctuations in streamflow concentrations are
damped compared to those in rainfall (d). The streamflow concentration scale has been expanded by a factor of 1.60, to account for dry
deposition and evapoconcentration; i.e. the weighted average concentrations of chloride in rainfall and streamflow would overlap exactly on the

graphs.
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sampling sites at Plynlimon, suggesting that it may be
a general property of many different types of catch-
ments. Second, we show that this fractal scaling can
arise from the advection and dispersion of rainfall
inputs distributed across a catchment, as they travel
downslope toward the stream.

2. Fractal tracer fluctuation scaling and power-law
travel-time distributions at Plynlimon

Catchments are spatially complex and subsurface
flow is invisible, so transport and mixing in catch-
ments can only be observed indirectly, using isotopic
and chemical tracers (e.g. Soulsby et al., 2000).
Chloride is an effective chemical tracer (Neal and
Rosier, 1990), because it is nonreactive under typical
catchment conditions; 180 or deuterium could also be
used as tracers, but long-term high-resolution time
series of these isotopes are rare. We analyzed chloride
concentrations in rainfall and streamflow at five small
(0.05-3.5 km?) catchments at Plynlimon, Wales
(Table 1); the catchments and the data sets are
described in detail elsewhere (Neal and Kirchner,
2000; Neal et al., 1997a). Plynlimon is close to the
Welsh coastline, and seasalt chloride inputs fluctuate
greatly from one storm to the next, reflecting varia-
tions in storm trajectories. By comparing the chloride
signatures of rainfall and runoff through time, we can
measure how long the catchments retain a chemical
memory of the rain that has fallen on them (Neal et al.,
1988; Robson et al., 1993).

At Plynlimon, storm rainfall inputs are usually
matched by prompt (and roughly equal) changes in
streamflow (Fig. la), whereas streamflow chloride
concentrations exhibit strongly damped response to
rainfall chloride inputs (Fig. 1b). This indicates that
peak flows consist mostly of pre-storm water released
from the catchment, rather than rainfall flowing
directly into the stream (Neal et al., 1988). Thus, the
timescales of hydrologic and chemical response are
decoupled, with chemically ‘old” water being released
promptly in response to ‘new water’ inputs (Buttle,
1994; Sklash et al., 1996). But how old is this old
water? The water reaching the stream at any given
time will be a mixture of rainfall that has fallen on
each point in the catchment at various times in the
past, weighted by the travel-time distributions that

characterize the flowpaths connecting each point
with the stream. Obviously, the intricate spatial
complexity of real-world catchments makes it impos-
sible to map these flowpaths in detail. However, it
may nonetheless be possible to describe their aggre-
gate effects with simple conceptual models that can be
tested against catchment-scale input and output time
series. The purpose of this paper is to illustrate this
approach.

One can begin to probe the chemical ‘memory’ of
the Plynlimon catchments by comparing their tracer
concentrations in rainfall and streamflow, averaged
over different spans of time. For example, seasonal
fluctuations in rainfall chloride concentrations are
large and highly variable from year to year, whereas
seasonal fluctuations in streamflow chloride are much
smaller (Fig. 1c). This indicates that the streamflow
chloride signal averages together inputs from high-
chloride and low-chloride seasons, and thus implies
that the catchments retain significant volumes of
water from one season to the next. Even annually
averaged chloride concentrations are more variable
in rainfall than in streamflow (Fig. 1d), indicating
that the catchments are storing and mixing enough
water to affect runoff chloride concentrations from
one year to the next. Note that high-chloride seasons,
such as the winters of 1984 and 1990, elevate stream-
flow chloride concentrations for several years,
indicating that the catchments must be retaining
significant volumes of water on long timescales.

This intuitive approach can be made more precise
using spectral analysis, which decomposes the rainfall
and streamflow signals into their component wave-
lengths (Bracewell, 2000; Scargle, 1982), and
measures the spectral power (the square of the ampli-
tude) at each wavelength. The relationship between
the spectral power of the input (rainfall) and output
(streamflow) at each wavelength reflects how strongly
the catchment attenuates hydrologic and chemical
signals on each timescale. The power spectra of
streamflow water fluxes at Plynlimon nearly equal
the rainfall power spectrum (Fig. 2a), indicating that
the catchments transmit hydrologic signals with little
damping, on all but the shortest timescales. The power
spectra of streamflow chloride, by contrast, are
strongly attenuated compared to rainfall on all wave-
lengths shorter than several years, with progressively
greater attenuation at shorter wavelengths (Fig. 2b—f).
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Fig. 2. Power spectra of water fluxes and chloride concentrations at Plynlimon, Wales. The water flux spectra (a) indicate little damping, except
at the shortest timescales, whereas the chloride concentration spectra (b—f) show strong attenuation, except at the longest timescales. The
chloride spectra of rainfall (dotted lines) resemble white noise (and are the same in each panel); those of streamflow (solid lines) resemble 1/f
noise, with spectral power increasing proportionally to wavelength across the entire range of scales. For ease of interpretation, the spectra are
shown as functions of wavelength (1/frequency) rather than frequency. Panels (c)—(f) show chloride concentration spectra for four other
sampling sites at Plynlimon. Daily chloride concentration data (solid black lines) are available only for Hafren (b) and Tanllwyth (c); weekly
stream concentrations (solid gray lines) are available, for varying timespans, at every site. Upper Hore (e) is a sampling point halfway up the
Hore catchment (d); below this point most of the Hore catchment was clearfelled during the first half of the period of record. South2 Hore (f) is a
small hillslope tributary in the clearfelled zone. Its unusually high spectral power at long wavelengths is caused by non-stationarity in its time
series, which may be associated with clearfelling during the second year of its nine-year sampling record. Because the rainfall chloride time
series have gaps (since rainfall concentrations are undefined on dates without rain), we used the Lomb—Scargle Fourier transform, which has
the same statistical properties as the conventional Fast Fourier Transform, but does not require evenly spaced data (Scargle, 1982).

Except for a strong annual peak and its subharmonics
(which reflect seasonal fluctuations), the rainfall
chloride spectrum scales roughly as white noise.
The streamflow chloride spectra, by contrast, show
fractal power-law scaling that resembles 1/f noise

(Fig. 2b—f); this indicates that these catchments are
acting as fractal filters, converting white noise inputs
into 1/f noise outputs spanning three orders of magni-
tude (i.e. over timescales of days to several years).
This scaling behavior is directly related to the



J.W. Kirchner et al. / Journal of Hydrology 254 (2001) 82—101 87

catchments’ travel-time distributions. If a catchment’s
travel-time distribution is broad compared to the
wavelength of a chloride fluctuation in the rainfall,
waters from high-chloride and low-chloride rainfall
inputs in the past will be mixed together in the stream.
This mixing implies that the chloride fluctuations will
be averaged together, and thus will be damped. The
shorter the wavelength of the chloride fluctuation in
rainfall compared to the catchment’s travel-time
distribution, the greater the number of high-chloride
and low-chloride fluctuations that are averaged
together, and the stronger this attenuation by
averaging becomes. Conversely, chloride variations
on timescales that are long compared to the travel-
time distribution will be transmitted through the
catchment without significant attenuation.

The relationship between a catchment’s travel-time
distribution and its power spectrum can be made
mathematically explicit (Duffy and Gelhar, 1985,
1986). The travel-time distribution determines how
much of today’s rainfall will reach the stream tomor-
row, the day after tomorrow, and so forth. Thus, the
present concentration of a conservative tracer in the
stream will reflect the rainfall concentrations through-
out the past, weighted by their fractional contribution
to the present runoff. In other words, the stream
concentration cg(f) at any time ¢ is the convolution
of the travel-time distribution A(7) and the rainfall
concentrations cg(t — 7) throughout the past, where
7 is the lag time between rainfall and runoff:

es() = J: h(r)er(t — 1) dr )

Because the flow rate varies through time, Eq. (1) is
strictly valid when ¢ and 7 are expressed in terms of
the cumulative flow through the catchment, rather
than calendar time (Niemi, 1977; Rodhe et al.,
1996), but the mathematics are the same in either
case (Niemi, 1977). We analyzed the Plynlimon data
both ways and obtained functionally equivalent
results, so for simplicity we use the time-based form-
alism here. Eq. (1) implies that

Cs(f) = H(H)Cr(S) and
)
ICs(HI” = [HHFICr(H

where f is frequency (cycles/time); Cs(f), H(f), and
Cr(f) are the Fourier transforms of cs(¢), h(7), and

er(t— 7); and |Cs(HP, |H(PHF, and |Cr(F)|* are
their power spectra (Gelhar, 1993). In our case,
because the rainfall concentration spectrum is nearly
white noise (|Cr(f)* = constant), the spectrum of the
travel-time distribution is roughly progortional to the
runoff concentration spectrum ([H(f)|* o< |Cs(f)|).

In our earlier work, we demonstrated that the
scaling behavior shown in Fig. 2b—f is inconsistent
with two commonly used conceptual models for
catchments. Catchments are often modeled as well-
mixed reservoirs, implying that their travel-time
distributions should be exponentials with the charac-
teristic form

1 _
h(r)= —e ™™ or
To

h(tl7y) = e ™™ (3)

where 7 is the travel time, and 7 is the mean travel
time (or, equivalently, the volume of water stored in
the catchment divided by the average flow rate). Eq.
(3) implies a power spectrum of the form

H =1 + 423" or
K 4)

HO = — &
[H) (A +4n?7)

where A is wavelength (f = 1/)A). Eq. (4) has a power-
law slope of 2 for wavelengths of A < 217, incon-
sistent with the power spectra in Fig. 2b—f, which
have a power-law slope near 1. Alternatively, catch-
ments are sometimes modeled by advection and
dispersion along a flowpath of fixed length, but this
yields no power-law scaling at all (Kirchner et al.,
2000), which is clearly inconsistent with the power
spectra in Fig. 2.

The fractal 1/f scaling shown in Fig. 2b—f is,
however, consistent with a gamma distribution of
travel times

a—1

_ 7 —B
h(t) = Bar(a)e )

where « is a shape parameter and 8 = 7/« is a scale
parameter. When « = 0.5, the gamma distribution
becomes

1
h / — *(1/2)7’/70 6
(7'7) \ 2n(rim) ©)

where a factor of 7, the average travel time, has been
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Fig. 3. Conceptual model of dispersion of spatially distributed tracer inputs, as they advect down a hillslope cross-section en route to a stream
channel. Tracer pulses that land close to the stream reach it promptly, with relatively little dispersion. Tracer pulses that land farther upslope
must travel farther to reach the stream, and undergo more dispersion. The tracer signal in the stream will integrate the contributions from each
point along the length of the hillslope, with a peak at short lag times (reflecting tracers landing near the stream) and a long tail (reflecting tracers

landing farther upslope).

introduced by the change of variables in re-casting
h(T) as h(7/1y). In contrast to the conventional models
described above, the gamma distribution can simulta-
neously exhibit both long-term memory of past inputs
(because it has a broad tail, proportional to 770‘5,
before falling off as e ”*™ in the limit of large 7),
and short-term responsiveness to rainfall inputs
(because 7~ rises toward infinity as 7 approaches
zero, but does so in such a way that its integral is
finite). With « =0.5, the gamma distribution’s
power spectrum (Bain, 1983)

H(HIF = A+ 167°23) "% or
A (7N

JA2 + l6m2 7

agrees well with the observed power spectra (Fig. 2b—
f), with a power-law slope of 1 for A < 4mT,.

Thus, the gamma distribution is an empirically
adequate description of the scaling behavior seen at
the Plynlimon catchments. However, the mechanistic
basis for this travel-time distribution, and thus for the
fractal scaling behavior that it implies, has until now
remained unclear. We have previously suggested that
the fractal scaling behavior observed at Plynlimon

HW* =

might reflect the fractal characteristics of soil pores
and bedrock fractures, or that, alternatively, it may
arise through more prosaic mechanisms, such as
advection and dispersion along an ensemble of flow-
paths connecting the stream with the surrounding
catchment area (Kirchner et al., 2000). Here, we
explore a simple model for advection and dispersion
of spatially distributed rainfall inputs. We show that
with plausible parameter values, this simple concep-
tual model yields travel-time distributions similar to
Eq. (6), and power spectra like those observed at
Plynlimon.

3. A conceptual model of advection and dispersion
of spatially distributed inputs in catchments

In small upland catchments like Plynlimon, the
great majority of runoff reaches the stream by flowing
downslope in the shallow subsurface, either through
the soil matrix, along the soil/bedrock contact, or
within the upper few meters of fractured bedrock
(e.g. Anderson and Burt, 1990; Anderson et al.,
1997; Bishop et al., 1990; Dunne, 1978; Montgomery
etal., 1997; Soulsby et al., 1998). Because most of the
downslope flow occurs in a layer just a few meters
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Fig. 4. Catchment travel-time distributions predicted by the
spatially distributed advection—dispersion model (Eq. (11)) for a
range of Peclet numbers, compared to the empirical gamma distri-
bution (Eq. (6)). The advection—dispersion model strongly resem-
bles the gamma distribution for Peclet numbers near 1, but diverges
from it for Pe > 1 and Pe < 1. The same curves are shown on three
different sets of coordinate axes (linear, semi-log, and double-log),
in order to illustrate their general shape (a), as well as their upper
and lower tails (b,c).

thick — whereas hillslope lengths are typically 100s
of meters — the flow down a hillslope cross-section
(e.g. Fig. 3) is very nearly one-dimensional. Here,
therefore, we develop a one-dimensional model of

advection and dispersion along a hillslope cross-
section (Fig. 3), in which water flows downhill
through a shallow subsurface layer (here, ‘shallow’
means that the thickness of the subsurface flowing
layer is much less than its length L). Let us assume
for simplicity that bulk advection through this layer
occurs at a fixed velocity, determined by the hydraulic
conductivity and the slope of the underlying imperme-
able layer. As a thought experiment, assume a steady
rainfall rate, introduce a brief tracer pulse into the
rainfall, and then consider how the tracer pulse will
advect and disperse downslope (Fig. 3). Tracer pulses
that land close to the stream will reach it quickly, and
will undergo relatively little dispersion. Tracer pulses
that land farther upslope must travel farther to reach
the stream, and will undergo more dispersion, so the
signals that they add to the stream will be more spread
out in time. The tracer signal in the stream will be the
integral of the contributions from each point along the
length of the hillslope, with a peak at short lag times
(reflecting tracers landing near the stream) and a long
tail (reflecting tracers landing farther from the
stream).

We can make this intuitive picture more mathema-
tically explicit. A tracer pulse that lands a distance x
from the stream, advects downslope at a velocity v,
and undergoes dispersion at a rate determined by the
dispersion coefficient D, will arrive at the stream with
a distribution of travel times determined by the solu-
tion to the advection—dispersion equation (Kreft and
Zuber, 1978):

e—(X—VT)Z/(4DT) (8)
4D

It is the fact that inputs enter the system along its
entire length that distinguishes the model in Fig. 3
from the fixed-length advection—dispersion model,
which we have previously shown is inconsistent
with the scaling behavior observed at Plynlimon. To
determine the travel-time distribution of tracers arriv-
ing at the stream, we need to average Eq. (8) from the
streambank (x = 0) to the hilltop (x = L)

px,7) =

L
f P, Pw) dr
h(r) = == ©)

J w(x) dx
x=0

where w(x) is a weighting function that is proportional
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gamma distribution’s spectrum for Peclet numbers near 1, and exhibits 1/f scaling for a range of Peclet numbers around 1.

to the fraction of the catchment’s surface area at any
distance x from the stream (thus accounting for the
shape of the catchment). For the one-dimensional
model shown in Fig. 3, w(x) is a constant and Eq.
(9) can be solved analytically, yielding

h(q’) = l‘ 2[67(*"7)2/4[)7' _ e*(L*v7)2/4DT]
LY mT

v L—vr —VvT

()l )] o

One can see that in the limit as 7 approaches zero,
the travel-time distribution shown in Eq. (10) is
roughly proportional to 7~ %3, just like the gamma
distribution shown in Eq. (6). Equation (10) appears
to depend on three separate parameters: the hillslope
length L, the advective velocity v, and the diffusion
constant D. However, it can be simplified to a single-
parameter model by two transformations of vari-
ables. First, we non-dimensionalize the rate of
dispersion using the average Peclet number Pe =
vL/2D, i.e. the ratio of the timescales of advective
and dispersive transport from the middle of the hill-
slope. Second, we re-express the travel time 7 as a
dimensionless ratio with the average travel time 7, =
L/2v, i.e. the time required for advective transport
from the middle of the hillslope to the stream.
With these substitutions, Eq. (10) becomes a func-

tion only of the Peclet number and the dimensionless
travel time 7/7,

/ 1 —1/4Pe(7i7) (20 —(2)?
W) = e — &)~
(7/70) 4mPe(7/ 1) © [ ¢ ]

4 lerf(a) — erf(zy)]

an

where

1
0 = — EVPET/TO and

12)

1
7L = \/Pe/(T/’TO) - E\/PeT/TO

The double-underlined terms in Eq. (11) have the
same general form as the gamma distribution given in
Eq. (6). As Fig. 4 shows, Eq. (11) is a good approx-
imation of the gamma distribution when the Peclet
number is near 1, i.e. when advection and dispersion
are of roughly equal effectiveness in transporting the
tracer to the stream. Thus, our simple advection—
dispersion system with spatially distributed inputs
(Fig. 3) can yield an approximate gamma distribution
of travel times, but only when dispersion is a signifi-
cant component of the solute flux.

Since the primary evidence for a gamma-like
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Fig. 6. Best-fit power spectra of the advection—dispersion model
(Eq. (11)) and the gamma distribution (Eq. (6)), fitted to the Plynli-
mon data by adjusting the mean travel time 7,. At Peclet numbers
near 1 or less, the advection—dispersion model fits the observed
chloride spectra at least as well as the gamma distribution does.
At Peclet numbers near 10 or higher, the advection—dispersion
model’s power spectrum is inconsistent with the Plynlimon data.

distribution of travel times is the 1/f scaling we
have observed in streamflow chloride concentra-
tions, it is important to determine whether the
spectral properties of the spatially distributed advec-
tion—dispersion model (Eq. (11)) are consistent with
the fractal filtering behavior shown in Fig. 2 above.

Table 2

The power spectrum of the travel-time distribution
can be estimated by taking the Fourier transform, by
numerically integrating

H(f)= Jh(r) e *"Tdr (13)

The spectral power is then calculated by multiply-
ing the Fourier transform H(f) by its complex conju-
gate. As Fig. 5 shows, the power spectrum of the
spatially distributed advection—dispersion model
exhibits 1/f scaling at wavelengths A shorter than
the mean travel time 7, for a range of Peclet numbers
near 1. At Peclet numbers much greater than 1, the
model deviates substantially from 1/f scaling.

We can fit the power spectra of the travel-time
distributions to the observed streamflow chloride
spectra by adjusting the mean travel time 7,. As Fig.
6 shows, the spatially distributed advection—disper-
sion model almost exactly matches the gamma distri-
bution (and thus fits the streamflow spectra as well as
the gamma model does) for Peclet numbers in the
range of 0.1-1. However, power spectra for Peclet
numbers on the order of 10 or greater are inconsistent
with the observed power spectra at Plynlimon.

The best-fit travel times 7, are roughly half as long
at Tanllwyth as at Hafren, for both the advection—
dispersion and gamma models (Table 2). The Hafren
catchment is dominated by podzolic soils, which are
more permeable than the gleys that dominate the
Tanllwyth catchment. Thus, one would expect that
the Tanllwyth catchment should have less capacity
to store water, and greater potential for rapid near-
surface runoff. This expectation is consistent with
the shorter mean residence time 7, implied by the
Tanllwyth power spectra.

Mean travel times and dispersivities implied by best-fit power spectra

Mean travel time (yr)

Model Dispersivity (ay) Hafren Tanllwyth
Gamma distribution (Eq. (6)) n/a 0.82 = 0.02 0.36 = 0.01
Spatially distributed advection and dispersion (Eq. (11))

Pe=0.1 SL 432 *0.11 1.98 = 0.05
Pe=1 0.5L 0.58 = 0.01 0.28 = 0.01
Pe =10 0.05L 0.18 = 0.01 0.11 £0.01
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4. Discussion

Our analysis has shown that downslope advection
and dispersion of spatially distributed rainfall inputs
should cause fractal filtering of their tracer concentra-
tions, similar to that observed in the chloride tracer
time series at Plynlimon. We have thus shown that, as
an explanation for the fractal scaling in the Plynlimon
data, catchment-scale advection and dispersion is a
phenomenologically adequate hypothesis. But is it a
mechanistically plausible one? For the hypothesis to
be mechanistically plausible, at least two conditions
must be met. First, its premises must be reasonable, at
least as an approximation to the intricate complexity
of real-world catchments. Second, its parameter
values, when fitted to the data, must be realistic. We
consider each of these issues in turn.

Our analysis is based on a highly idealized catch-
ment cross-section, in which downslope flow is
confined to a thin conducting layer (e.g. at the inter-
face between highly permeable soils and highly
impermeable bedrock). The Plynlimon catchments,
by contrast, are underlain by deeply fractured shales,
slates, and grits, with flow occurring at a range of
depths. Neal et al. (1997b) detected groundwater at
each of 13 boreholes drilled in the Hafren catchment.
Ten of these boreholes were shallow (<15 m depth),
and groundwater levels were typically less than 10 m
below the surface; inputs to the boreholes were
localized as fracture flows and water levels fluctuated
by as much as 3 m. In three deeper boreholes (up to
50 m depth), groundwater was encountered at a range
of depths; water level and water quality fluctuations in
these boreholes implied more rapid circulation and
greater storage at depths of less than 10 m. There is
also strong evidence that these shallower ground-
waters are in hydraulic contact with the soils and, in
places, in direct contact with the stream (Neal et al.,
1997c). Studies now underway using nested
sequences of shallow boreholes along hillslope trans-
ects at Plynlimon show stratification, with an extre-
mely hydrologically active shallow (<10 m) fracture
flow system (A. Haria and P. Shand, personal commu-
nication). Considered together, these lines of evidence
indicate that the bulk of subsurface transport at
Plynlimon takes place at depths that are small
compared to the typical hillslope length (100s of
meters). Thus, the cross-sectional geometry depicted

in Fig. 3 seems reasonable to us as a rough approx-
imation.

Our analysis also assumes a simple planform
geometry, characterized by a constant increment of
contributing area at any distance x from the channel.
We explore the effects of catchment planform
geometry on travel-time distributions and power
spectra in Appendix A; that analysis demonstrates
that the only catchment geometry that fails to produce
fractal 1/f scaling is one in which the entire catchment
runoff converges to a single channel head, with no
lateral stream inputs. In that end-member case, the
near-stream inputs that are responsible for the catch-
ment’s short-term response (see Fig. 3) are
outweighed by highly dispersed inputs from upslope.
The Plynlimon catchments do not resemble this end-
member case, instead having stream channels that
extend a significant fraction of the catchments’
lengths. Within the range of geometries present at
Plynlimon, the spatially distributed advection—disper-
sion model yields fractal 1/f scaling, similar to that
seen in the time series data (see Appendix A).

The third major premise of our analysis is that
water advects downslope at a constant speed. In
reality, we would expect the bulk advection speed to
be highly variable, both spatially and temporally. The
spatial variations in advection speed (which arise
primarily from heterogeneities in hydraulic conduc-
tivity) are, of course, a major mechanism underlying
macro-dispersion at catchment scale. In this sense,
spatial variations in advective transport underlie our
analysis, although they are represented in the equa-
tions implicitly rather than explicitly. Temporal fluc-
tuations in advection speed can be accommodated by
re-casting the time variable in terms of cumulative
flow through the catchment rather than cumulative
time on a clock (Niemi, 1977; Rodhe et al., 1996).
The end result of this approach is a travel-time equa-
tion of exactly the same form as Eqgs. (11) and (12),
but with 7 replaced everywhere by Q, the cumulative
flow through the catchment, and 7, replaced every-
where by Qy, the volume of water stored in the catch-
ment (this implicitly assumes that diffusion is a trivial
component of total dispersion, which is reasonable for
near-surface flow like that considered here). Because
the travel-time equation is the same, it yields 1/f scal-
ing just like the analysis presented above, but with
wavelengths measured in units of flow rather than
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units of time. The Plynlimon catchment time series
exhibit 1/f scaling as a function of cumulative flow as
well as elapsed time, so the model predictions and the
observed data resemble one another in the flow
domain as well as the time domain.

The fourth, and most fundamental, premise of our
analysis is that solute transport occurs by advection
and dispersion, of a kind that is adequately captured
by Eq. (8). One check on this premise is to ask
whether the parameter values implied by the fits to
the data (Fig. 6) are realistic. Reviews by Neuman
(1990) and Gelhar et al. (1992) show that field
measurements of advective—dispersive transport
over distances of 100s of meters (comparable to the
flow distances in our catchments) typically yield
Peclet numbers on the order of 10, with a few values
as low as 1 or as high as 100 or more. Fig. 6 implies
that if transport at Plynlimon is governed by classical
advection and dispersion, its average Peclet number
must be on the order of 1, at the low end of the range
observed elsewhere, since Peclet numbers of 10 or
100 are inconsistent with the Plynlimon data.

A further constraint is provided by the average
travel times 7, that are needed to fit the advection—
dispersion model to the Plynlimon data. As Table 2
shows, Peclet numbers much less than 1 require
unrealistically long mean travel times, on the order
of several years. Given annual runoff of roughly
200 cm/yr at Plynlimon (Neal and Kirchner, 2000),
a mean travel time of 2—5 yr would imply catchment
storage of 400—1000 cm of water in the subsurface,
and it is difficult to imagine how this could be accom-
modated. Thus, for Peclet numbers much less than 1,
the spatially distributed advection—dispersion model
requires implausibly long travel times, and for Peclet
numbers much greater than 1, it predicts power
spectra that are a poor match for the scaling behavior
that is observed (Fig. 6). These considerations thus
constrain the effective Peclet number to Pe =~ 1 at
Plynlimon, near the low end of the range of values
observed elsewhere.

As diffusion is a trivial component of total disper-
sion, the dispersion coefficient D in Egs. (8)—(10) can
be re-expressed as the product of the advection velo-
city v and a longitudinal dispersivity length scale ay,
which has units of length. The Peclet number can
likewise be re-expressed as the ratio of the catchment
length scale (which we have here defined as the aver-

age travel distance, L/2) to the dispersivity length
scale ay. Thus the Peclet numbers on the order of 1,
which can be seen from Fig. 6 to provide a good fit to
the time series data, imply dispersivity length scales
o, = L/(2Pe) on the order of the average travel
distance (see Table 2). In order for the Plynlimon
catchments’ fractal filtering behavior to arise from
advection and dispersion of spatially distributed rain-
fall inputs, their characteristic dispersivities must
approach the hillslope length.

In summary, an advection—dispersion mechanism
like that hypothesized here is consistent with the Plyn-
limon data, but only with dispersivities of roughly the
same scale as the hillslope length itself. These large
dispersivities (or, equivalently, small Peclet numbers)
are characteristic of a subsurface flow system in which
hydraulic conductivity is spatially heterogeneous at
all scales, up to the scale of the entire hillslope.
Several lines of field evidence support this conceptual
picture at Plynlimon. First, fracture-flow-dominated
groundwaters have been found at every borehole
drilled in the Hafren catchment, whether close to the
divide, at mid-slope, or close to the stream (Neal et al.,
1997b), implying an extensive fracture system.
Second, the chemistry and hydrology of these ground-
waters are spatially and temporally variable, implying
that the groundwater system is dynamic both physi-
cally and chemically across the catchment. Third,
flow routing through macropores has been directly
observed at Plynlimon, with hydrologic events produ-
cing marked, but highly variable, changes in macro-
pore flow, chemistry, and isotopic composition
(Chapman et al., 1997; Gilman and Newson, 1980;
Muscutt, 1990; Sklash et al., 1996). Finally, runoff
in small streams across the Hafren catchment is highly
variable both spatially and temporally, exhibiting no
consistent correlation with bedrock geology, soil
types, geomorphic setting, or location within the
catchment, suggesting great variability in what
would be termed °‘soilwater’ and ‘ground water’
inputs (Hill and Neal, 1997; Neal et al., 1997d).

Thus, the field evidence from Plynlimon indicates a
spatially heterogeneous flow system dominated by
large conductivity contrasts, consistent with the
macro-dispersive flow implied by our analysis. This
macro-dispersive behavior implies that the shallow
subsurface flow layer must contain a tangle of differ-
ent flowpaths with widely varying conductivities.
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These flowpaths may be distributed laterally across
the hillslope (i.e. perpendicular to the plane of Fig. 3),
such that solutes that fall equal distances from the stream
— but at different locations across the slope — will run
off at different speeds. In addition, the conductivity of
the shallow groundwater flow system probably
decreases with depth; as a result, groundwater flows
that are nearer to the surface should transport their
solutes more rapidly downslope, creating a macro-
scopic form of shear dispersion in the subsurface.
The exact configuration of flowpaths in the subsurface
is not known, nor is it likely to ever be knowable.
Thus the challenge of catchment modeling is to intro-
duce as much physical realism as possible, without
imposing undue literalism concerning details that
are unobservable. The most that can be said at this
point is that the fractal chloride tracer spectra imply
macro-dispersion at hillslope scale, and thus imply a
highly heterogeneous network of fast and slow flow-
paths.

It is perhaps surprising that such a prosaic mechan-
ism as advective—dispersive transport could convert
non-fractal catchment inputs into fractal outputs.
However, while our analysis shows that this simple
mechanism could be responsible for the fractal scaling
observed at Plynlimon, we emphasize that we have
not yet tested several other candidate hypotheses,
including mobile—immobile models (e.g. Sposito et
al., 1986), fracture flow models (e.g. Dershowitz and
Miller, 1995; Tsang and Neretnieks, 1998), two-
dimensional flow net models (e.g. Toth, 1963), and
transmissivity feedback models (e.g. Bishop, 1991),
any or all of which could potentially yield similar
fractal scaling. Thus, we cannot yet say whether the
fractal scaling in the Plynlimon data is diagnostic of a
single generating mechanism.

Our analysis implies that understanding timescales
of catchment response may require explicitly
acknowledging that catchments are spatially exten-
sive, and that they receive spatially distributed inputs.
To our knowledge, no parsimonious zero-dimensional
model (such as a simple system of linked ‘boxes’) can
reproduce the fractal scaling we have observed. We
also note that the same advection—dispersion equation
that is used here (Eq. (8)) yields no fractal scaling (and
thus is incompatible with the Plynlimon data) when it
is used to model a single fixed-length flow path, with
inputs at one end and outputs at the other (Kirchner et

al., 2000). This implies that the fractal scaling exhib-
ited by our simple model system (Fig. 3) depends on
its spatially distributed character (although, as we
show in Appendix A it does not require a particular
geometric configuration). Thus, it appears that one
must consider catchments as spatially distributed
systems, but conventional distributed models require
tuning large numbers of parameters, and thus are
immune to rigorous testing (Beven and Binley,
1992; Kirchner et al., 1996). We are cautiously
optimistic that approaches like the one presented
here — spatially distributed, but not disaggregated
into individually parameterized compartments —
can provide a ‘middle path’ between box models
and distributed models, contributing new insights
into the hydrology and geochemistry of catchments.
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Appendix A. Effects of catchment geometry on
tracer travel-time distributions and power spectra

In the analysis above, we assumed a particularly
simple catchment geometry, in which the fraction of
the contributing area at any given distance from the
stream was a constant. Here, we explore how alterna-
tive catchment geometries affect the distribution of
tracer travel times, and thus affect the power spectrum
of tracer fluctuations.

The catchment travel-time distribution is deter-
mined by the constitutive equation for advective—
dispersive transport (Eq. (8)), convolved with a
weighting function w(x) that describes the distribution
of catchment area with distance x from the stream (see
Eq. (9)). Since transport through the channel network
is orders of magnitude faster than subsurface transport
down hillslopes, it can be neglected for small
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w(x)=2S (=constant)

Fig. 7. Two catchment geometries that correspond to the weighting
function, w(x) = constant, used in Eqs. (10)—(12) and Figs. 4-6.
The stream channel is denoted by the heavy line, the sampling point
along it is denoted by the diamond symbol, and the channel head is
denoted by the large dot. S is stream length, L is hillslope length, and
the dashed line denotes all points a given distance x from the stream.

headwater catchments like ours. This implies that we
need to concern ourselves only with the distribution of
times (not the distribution of locations) at which a
chemical tracer will reach the stream channel.
Because transport through the channel network is
fast enough to be considered instantaneous on the
timescales of interest, the weighting function w(x) is
a complete description of the geometric factors
controlling the catchment’s travel-time distribution.
The weighting function used above to derive Egs.
(10)—(12), and thus to generate Figs. 4-6, is the
simplest possible weighting function, w(x)=
constant. This weighting function obviously corre-
sponds to the rather artificial catchment geometry
shown in Fig. 7a, but it also characterizes the geome-
try shown in Fig. 7b, which is closer to the configura-
tion of real-world catchments. Note that the
configuration shown in Fig. 7b can include any stream
length S, as long as S = (w/2)L. But although the
weighting function w(x) = constant is consistent
with a not-too-unrealistic catchment configuration, it
is unlikely to hold exactly in any real-world situation.
Spatially distributed advection and dispersion
cannot be a plausible general model for fractal filter-
ing in catchments, unless it generates that fractal
filtering behavior for a suitably wide range of
catchment geometries, not just for the idealized
configuration shown in Fig. 7b. It is reasonable to
expect that in some real-world catchments the incre-
mental contributing area represented by w(x) will
increase with distance from the stream, while in

CANG L

~

w(x)=28 (1-xIL)

Fig. 8. Two end-member catchment geometries. One end-member
case represents flow converging to a channel head from an
amphitheater-shaped catchment: (a), such that the incremental drai-
nage area represented by the weighting function w(x) increases with
distance from the channel. The other end-member case (b) repre-
sents a stream that reaches all the way to the head of a v-shaped
valley, with a weighting function w(x) that decreases with distance
from the channel. Symbols are as in Fig. 7.

other catchments it will decrease. We will therefore
explore these two possibilities — w(x) increasing, and
decreasing, with distance from the stream — using
two end-member catchment configurations and their
associated weighting functions. We will then explore
configurations that combine these two end-member
cases in different proportions.

We first consider the case where the fractional
contributing area w(x) increases with distance from
the stream. The end-member case, shown by Fig. 8a,
corresponds to an amphitheater-shaped valley with
subsurface flow converging to the channel head;
tracer concentrations are measured at the channel
head itself. In this configuration, the increment of
contributing area w(x) decreases with proximity to
the channel head. One would expect, therefore, that
the contribution of near-stream inputs (which are the
source of the short-term responsiveness of the model
system shown in Fig. 3) will be outweighed by inputs
from upslope, which will have undergone more
dispersion. One can test this conjecture mathemati-
cally by convolving the weighting function for this
geometry (w(x) = 6x, where 6 is the angle over
which flow converges to the channel head) with the
advection—dispersion equation (Eq. (8)), and normal-
izing by the integral of the weights as described by Eq.
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Fig. 9. Travel-time distributions and power spectra for the two end-member cases shown in Fig. 8. Convergent flow toward a channel head, as
shown in Fig. 8a, yields travel-time distributions and power spectra that are inconsistent with the gamma distribution and 1/f scaling observed
at Plynlimon (a,b). A catchment geometry in which the incremental contributing area w(x) decreases upslope, as shown in Fig. 8b, yields travel-
time distributions and power spectra that conform better to the observations at Plynlimon (c,d).

(9), yielding:

2v | DT 2 2 2 |D 2
h — 2 [l e @) _ am@)y - £ —(zL)
@ Vo [e ¢ ] L TI"Te

+ % (2D + v 7l[erf(z ) — erf(zy)] (A1)

where 7z and z; are expressed in dimensional form as

7z = (L — vo)/N4DT
(A2)

70 = —Vv7/V4DT and

Note that the travel-time distribution for this end-
member case behaves differently from our simple
one-dimensional model for parallel downslope flow
(Eq. (10)). In the limit as 7 approaches zero, this
distribution does not approach infinity as 7 *°, but

instead approaches the finite value 2D/L*. Thus, this
travel-time distribution lacks the short-term ‘spike’
seen in both the gamma distribution and in our simple
model derived above. As before, we can non-dimen-
sionalize the rate of dispersion using the Peclet
number Pe = vL/2D, and we can non-dimensionalize
the travel time as the dimensionless ratio 7/7) =
v/(L/2). With these substitutions, Eq. (A1) becomes
a function only of the Peclet number and the dimen-
sionless travel time /7,

1 _ _
h(7lTy) = ——=1[—2z0€ " — (zL —2zp) e @)

Pejw

N é[% + z%][erf(zL) — erf(zy)]
(A3)

where, as before, zo and zg are expressed in
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W(x)=6x + 25(1-x/L) sin(6/2)

Fig. 10. Intermediate catchment geometries that combine the two
end-member cases shown in Fig. 8. Both (a) and (b) are described by
the same weighting function w(x) = 6x + 2S(1 — x/L) sin(6/2), but
they have different ratios of stream length S to hillslope length L,
and therefore have different ratios of near-stream and upslope
contributing areas. Symbols are as in Fig. 7.

non-dimensional form as

1
0= — zw/PeT/TO and

(A4)

1
2 = /Pel(7l7y) — 5\/P€T/TO

The normalization constant 1, = L/2v is the time
required for water to flow from the middle of the
hillslope to the channel but, unlike in our simple
one-dimensional model, 7, is no longer equal to the
average travel time. The average travel time (2L/3v) is
somewhat larger than 7, because there is more contri-
buting area at the top of the hillslope than at the
bottom.

Particularly for Peclet numbers near 1 or greater,
the travel-time distribution for the end-member
geometry shown in Fig. 8a does not resemble the
gamma distribution (Fig. 9a). It is therefore not
surprising that the power spectrum of this end-
member travel-time distribution does not exhibit the
1/f scaling that is characteristic of our gamma distri-
bution, and characteristic of the Plynlimon tracer data
(Fig. 9b). In this end-member case, spatially distrib-
uted advection and dispersion yields a power
spectrum with a log—log slope of 2 at Peclet numbers
near 1 or less, and an even steeper slope at higher
Peclet numbers.

Let us now consider the case where the fractional

contributing area w(x) decreases with distance from
the stream channel. An end-member case, as shown in
Fig. 8b, is a channel that flows down the entire length
S of a v-shaped valley. The valley becomes wider
downstream from the channel head, such that the
catchment’s incremental contributing area w(x) =
25(1 — x/L) decreases linearly from the stream
channel to the divide. One would expect, therefore,
that upslope inputs will have relatively little effect on
the travel-time distribution, which instead will be
dominated by near-stream inputs. As we have done
above, we can derive the travel-time distribution by
convolving our new weighting function with the
advection—dispersion equation, and normalizing by
the integral of the weights, yielding:

h(r) = 27; DT @r _ gy 4 2 [Py
LY @ LY 7T

2DV
n I:I‘i - % ][erf(zL) — erf(zy)]

(AS5)

where the dimensional forms of zy and z; are given by
Eq. (A2). Note that in the limit as T approaches zero,
the first term of Eq. (AS5) approaches infinity as 7~ *°
(just like our gamma distribution does), while the
second term vanishes and the third term converges
to v/L — 2D/L*. Thus the short-term behavior of this
distribution is similar to both our gamma distribution,
and our simple one-dimensional model (Eq. (10)).
Non-dimensionalizing as before, we derive the
dimensionless form of Eq. (AS) as

h(tlT) = ~(2) *(ZL)Z]

— 3¢

1
Pe./m [z e

. [% _ Pie[% n Zg]][erf(zL> — erf(z)]
(A6)

where the dimensionless forms of z, and z; are given
by Eq. (A4). As above, the normalization constant
Ty = L/2v is not quite equal to the average travel
time, which is instead L/3v.

Except for Peclet numbers much greater than 1, this
end-member geometry yields a travel-time distribu-
tion with short-term behavior similar to our gamma
distribution (Fig. 9c). The power spectrum for this
distribution exhibits 1/f scaling, except for Peclet
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Fig. 11. Travel-time distributions and corresponding power spectra for intermediate catchment geometries (as shown in Fig. 10), characterized
by three different ratios of stream length S to hillslope length L. Each panel compares three different catchment shapes under a single Peclet
number; the gamma distribution is shown in each case for comparison. In each case, the weighting function is w(x) = 6x + 2S(1 — x/L) sin(6/2)
with 8 = 2m/3 = 120°, as shown in Fig. 10. For Peclet numbers near 1, spatially distributed advective—dispersive transport yields 1/f scaling,
similar to that observed that Plynlimon, over a wide range of catchment shapes.

numbers much greater than 10 (Fig. 9d). Thus we see
that spatially distributed advection and dispersion can
generate fractal scaling similar to that seen at Plynli-
mon when the incremental contributing area decreases
in the upslope direction (Figs. 8b and 9c—d), but not
when it decreases to zero near the stream (Figs. 8a and
9a-b).

One of our end-member geometries (Fig. 8a)
consistently violates the 1/f scaling seen at Plynlimon,
while the other end-member case (Fig. 8b) consistently
exhibits scaling near 1/f, except at the largest Peclet
numbers. Most real-world catchments will have
configurations lying somewhere between our two
end-member cases. Thus we need to determine
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whether spatially distributed advection and dispersion
will generate 1/f scaling over a wide range of geome-
tries, or only in the end-member case. This question
can be explored using catchment configurations that
combine the two end-member cases in different
proportions. Consider the class of configurations illu-
strated by the two examples in Fig. 10, which combine
amphitheater-shaped valley heads (with flow conver-
ging to the channel head, as in Fig. 8a) and tapering
valleys (with incremental contributing areas decreasing
upslope, as in Fig. 8b). The weighting function that
describes the class of configurations shown in Fig. 10
is w(x) = 6x + 25(1 — x/L) sin(6/2), with the ratio of
stream length to hillslope length (S/L) controlling the
relative proportions of near-stream and upslope
contributing areas for any given valley head angle
0. The longer the valley relative to the hillslope
length, and the farther the channel extends toward
the divide, the smaller the proportion of the drainage
area that will exhibit convergent flow like Fig. 8a, and
the closer the catchment will conform to our second
end-member case (as in Fig. 8b).

Performing the convolution in Eq. (9) using the
weighting function in Fig. 10 directly yields the
travel-time distribution for these intermediate catch-
ment geometries:

— (2o )2

h(tlTy) = — wizp) €

1
W [(Woz,

(2

— (wizL + (wy — 2wp)zg) e~ @]

; [W .
2

where z, and z; are given in Eq. (A4), and w; and w,
are
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It can be seen that the travel-time distribution for
these intermediate geometries (Eq. (A7)) is simply
the weighted average of the travel-time distribu-
tions for the two end-member configurations (Egs.
(A3) and (A6)) with weights w; and w,. In the case

where S/L equals (6/2)/sin(6/2), and thus the
weights given to the two end-members are the
same, the travel-time distribution becomes exactly
equivalent to the simple one-dimensional model
given in Egs. (10) and (11).

For Peclet numbers near 1, these intermediate
catchment configurations yield travel-time distribu-
tions that strongly resemble the gamma distribution,
across a wide range of catchment shapes (S/L = 0.5
and greater; see Fig. 11c). Thus, at Peclet numbers
near 1, many different catchment configurations
yield 1/f scaling, similar to that observed at Plynlimon
(Fig. 11d). Peclet numbers near 10 yield 1/f scaling in
highly elongated catchments (S/L = 5), but in less
elongated catchments one sees a ‘step’ in the power
spectrum that is inconsistent with the Plynlimon data
(see Fig. 11f). Peclet numbers near 0.1 yield approx-
imate 1/f scaling across a wide range of catchment
shapes (Fig. 11b), but, as seen in Table 2 above, they
imply an implausibly long mean residence time of
water in the catchment.

Here we have considered two end-member catch-
ment geometries, and a range of intermediate config-
urations between them. This analysis yields three
general results. First, advective—dispersive transport
yields fractal 1/f scaling in a wide range of catchment
configurations, as long as the Peclet number is near 1
or smaller. Second, the only catchment geometry in
which advective—dispersive transport consistently
fails to produce fractal 1/f scaling is a highly artificial
one, in which the entire catchment runoff converges to
a channel head, with no lateral stream inputs (Figs. 8a
and 9b). Third, catchments require only small lengths
of stream channel receiving lateral stream inputs (e.g.
S/L = 0.5 in Figs. 10a and 11d) in order to generate
1/f scaling similar to that seen at Plynlimon. This
leads to the conjecture that the short-wavelength
fractal scaling seen at Plynlimon arises from advec-
tion and dispersion of near-stream inputs, with the
shape and extent of the upslope portions of the catch-
ment only controlling the convergence of the spectral
power to its long-wavelength limit. Because nearly
every catchment has near-stream zones in which rain-
fall inputs will advect and disperse, this conjecture
implies that fractal 1/f scaling in tracer concentration
time series, similar to that seen at Plynlimon, may be a
nearly universal phenomenon characterizing a wide
range of catchments.
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