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How quickly does biodiversity rebound after extinctions? Palaeo-
biologists have examined the temporal, taxonomic and geo-
graphic patterns of recovery following individual mass
extinctions in detail1±5, but have not analysed recoveries from
extinctions throughout the fossil record as a whole. Here, we
measure how fast biodiversity rebounds after extinctions in
general, rather than after individual mass extinctions, by calcu-
lating the cross-correlation between extinction and origination
rates across the entire Phanerozoic marine fossil record. Our
results show that extinction rates are not signi®cantly correlated
with contemporaneous origination rates, but instead are corre-
lated with origination rates roughly 10 million years later. This
lagged correlation persists when we remove the `Big Five' major
mass extinctions, indicating that recovery times following mass

extinctions and background extinctions are similar. Our results
suggest that there are intrinsic limits to how quickly global
biodiversity can recover after extinction events, regardless of
their magnitude. They also imply that today's anthropogenic
extinctions will diminish biodiversity for millions of years to come.

A key component of biotic recovery is the time lag between
episodes of rapid extinction and subsequent periods of rapid
origination. Originations rebuild biodiversity, and origination
rates are commonly assumed to peak when ecosystems have
recovered suf®cient diversity to inhibit further diversi®cation6.
Thus, the elapsed time between extinction rate peaks and origina-
tion rate peaks is one measure of the recovery time (Fig. 1). We can
estimate the average time lag for the whole fossil record using the
cross-correlation between extinctions and originations, which mea-
sures how closely the two time series resemble each other, when one
is shifted forwards or backwards by a speci®ed interval. For regularly
spaced time series, the cross-correlation function could be calcu-
lated as

rEO�k� �
S�Ei 2 ÅEi��Oj 2 ÅOj����������������������

S�Ei 2 ÅEi�
2

q �����������������������
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2
q ; j � i � k �1�

where E and O are the extinction and origination time series, and
rEO(k) is their cross-correlation when originations lag extinctions by
k steps. This direct approach cannot be applied to the fossil record,
because its stratigraphic boundaries are unevenly spaced in time.
Nor should one simply even out the spacing by interpolating within
each stratigraphic interval, because this introduces artefactual
correlation among the interpolated points7,8. Instead, we use equa-
tion (1) to calculate the correlation between all pairs of points Ei and
Oj whose separations in time, tj - ti, fall within 5 Myr bins of lag time
(rather than points separated by ®xed numbers of steps); this yields
a geostatistical approximation to the cross-correlation function9

(Fig. 2a, b). A second approach to calculating the cross-correlation
between two unevenly spaced time series is through their Fourier
transforms10,11:

rEO�t� � FT 2 1
�FT{E}FT*{O}� �2�

where FT, FT* and FT-1 denote the Fourier transform, its complex
conjugate and its inverse, respectively, and rEO(t) is the cross-
correlation between E and O at a lag of t Myr (Fig. 2c, d). We use
the Lomb±Scargle Fourier transform11±14 to calculate FT{E} and
FT*{O} directly from the unevenly spaced fossil data, without
interpolation. The Lomb±Scargle algorithm has similar statistical
properties, when applied to unevenly spaced data, to those of
conventional Fourier transform algorithms when applied to
evenly spaced data14.

Our source data are Sepkoski's compilations of fossil marine
animal genera15 and families16, with revisions through 1997. Because
long-term drift could obscure the cross-correlations that we seek to
analyse, we subtracted the long-term trends (shown as dotted lines
in Fig. 1b, c) from the extinction and origination time series before
analysis.

The resulting cross-correlation functions (Fig. 2) show that
extinctions and originations are not signi®cantly correlated over
short lag periods, indicating that, on average, extinctions do not
trigger immediate evolutionary rebounds. Instead, the cross-corre-
lation is strongest when originations lag extinctions by roughly 10
Myr. This indicates that the average interval between extinction
peaks and origination peaks, and thus the average recovery time
from extinctions, is about 10 Myr across the fossil record. The
statistical signi®cance of these cross-correlationsÐthat is, the
chance of correlations this strong arising by chance at any lag,
from -15 to 35 MyrÐis P , 0.05 for all but one of the 16 cases
shown in Fig. 2 (see Supplementary Information). The peak cross-
correlation occurs at similar lags with either calculation method,
and in both the genus and family data sets, indicating that this result
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is robust.
To test whether these results are driven by the mass extinctions,

we repeated our analysis after excluding the `Big Five' extinction
peaks (Fig. 1) from the data set. The resulting cross-correlations
(heavy dotted lines, Fig. 2) are weaker, but still have their strongest

positive values when originations lag extinctions by roughly 10 Myr.
We also rank-transformed the extinction and origination rates to
obtain a cross-correlation function, analogous to the Spearman
rank correlation, that minimizes the in¯uence of extreme values
associated with mass extinctions. The results of this analysis (dashed
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Figure 1 The fossil record of marine animal biodiversity. Standing diversity of genera and

families through the Phanerozoic (a), and corresponding percentages of extinction (b) and

origination (c) of genera in each stratigraphic interval. Shaded bands highlight recovery

intervals (between extinction rate peaks and subsequent origination rate peaks) for the

`Big Five' mass extinctions: end-Ordovician (1), late Devonian (2), end-Permian (3), end-

Triassic (4) and Cretaceous±Tertiary (5). Dotted lines in b and c show the long-term

trends (estimated using LOWESS, a robust curve-®tting technique19) that are subtracted

from extinction and origination time series before calculating cross-correlations.
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lines, Fig. 2) are similar to those obtained by deleting the `Big Five'
events. Considered together, these results indicate that recovery
times on the order of 10 Myr, previously noted for mass extinc-
tions3±5, are also characteristic of background extinctions.

The incompleteness of the fossil record implies that last occur-
rences of fossils, and thus apparent extinctions, are earlier than
actual dates of extinction17 (the Signor±Lipps effect); it also implies
that ®rst occurrences of fossils, and thus apparent originations, are
later than actual dates of origination5 (the `Sppil±Rongis' effect).
Could these two artefacts create lagged correlations similar to those
that we observe? We tested this possibility by assuming that
originations at each stage boundary were exactly equal to extinc-
tionsÐthus creating perfectly correlated records, with no lagÐand
then spreading apparent extinctions backwards in time and appar-
ent originations forwards in time, as one would expect from
incomplete sampling (see Methods). Figure 3 shows that even a
very incomplete fossil record, with average intervals of 5 or 10 Myr
between fossil discoveries, would not produce lagged correlations
similar to those we observed: smearing the fossil record stretches the
cross-correlation function toward longer lags, but does not shift its
peak. Therefore, the lagged cross-correlation in the real fossil data
cannot be explained by incomplete sampling of the fossil record.

As similar recovery intervals appear to follow both mass extinc-
tions and background extinctions, the timescale of recovery may be
determined not by the magnitude of individual extinctions, but
instead by the internal dynamics of the diversi®cation process.
Species do not merely occupy ecological niches; they also serve as
evolutionary starting points for radiation into additional niches,
and they themselves constitute niches for their predators, parasites
and symbionts. Consequently, as extinctions eliminate species they
also destroy niches, and may thus reduce biodiversity without
creating many evolutionary opportunities. Instead, new opportu-
nities for radiation may arise mostly from diversi®cation itself,
which, in creating new taxa, creates new niches and new evolu-
tionary pathways into existing niches. This implies that, after
extinctions, origination rates should initially be low, accelerating
only as diversi®cation creates niche space, and ®nally peaking when
ecosystem structure is suf®ciently developed to slow further diver-
si®cation. The duration of this process, and thus the recovery
timescale, will depend on the structure of the post-extinction
ecosystem, which will be con®gured differently than the pre-
extinction ecosystem. If the structure of the new ecosystem depends
on biogeographic and taxonomic factors2, the duration of the
recovery process may be largely independent of extinction magni-
tude. Thus, although mass extinctions are larger than background

extinctions, we should not expect their recoveries to be proportion-
ally or consistently longer.

Multimillion-year recovery intervals are a previously unrecog-
nized general property of the fossil record, not a phenomenon
associated only with mass extinctions. Our results suggest that there
are intrinsic `speed limits' that regulate recovery from small extinc-
tions as well as large ones. Thus, today's anthropogenic extinctions
are likely to have long-lasting effects, whether or not they are
comparable in scope to the major mass extinctions. Even if Homo
sapiens survives several million more years, it is unlikely that any of our
species will see biodiversity recover from today's extinctions. M

Methods
Source data

Sepkoski's timescale aggregates some stratigraphic stages and subdivides others, yielding
106 intervals, 2.5 to 12.5 Myr in length, from the Cambrian through the Pleistocene. To
minimize LagerstaÈtten and monographic effects15, we excluded all taxa that occur in only
one stratigraphic interval. We analysed originations and extinctions as percentages per
stratigraphic interval (originations or extinctions divided by total diversity in each
interval) and percentages per unit time (originations or extinctions divided by total
diversity and interval length)18. Our family cross-correlations (grey lines, Fig. 2) exclude
the Cambrian, because its low initial familial diversity yields anomalously high percen-
tages of extinctions and originations. We assigned originations in each interval to the
stratigraphic boundary that begins it, and extinctions to the stratigraphic boundary that
ends it; this approach is conservative because it minimizes the time by which originations
lag extinctions. To the extent that faunal turnover occurred within (rather than between)
stratigraphic intervals, and thus extinctions and originations within each interval were
highly correlated, our procedure would yield an artefactual negative lag (that is, extinc-
tions lagging originations), the opposite of what we observe. Assigning originations and
extinctions to the midpoint of each stratigraphic interval would lengthen the lag between
extinctions and subsequent originations by roughly the average interval length (5 Myr),
but would not signi®cantly change the shape of the cross-correlation functions (see
Supplementary Information).

Simulating incomplete sampling

If fossil discoveries from a given genus or family are randomly distributed through time (a
Poisson process), the interval Dt between the actual time of origination and the ®rst fossil
found (or between the actual time of extinction and the last fossil found) will follow an
exponential probability distribution:

p�Dt� �
1

T
e 2 Dt=T

�3�

where T is the average interval between individual fossil discoveries from each genus or
family. The apparent extinction or origination time series can be estimated by convolving
equation (3) with the actual time series of extinctions or originations.
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Several of the most ambitious theories in ecology1±14 describe food
webs that document the structure of strong and weak trophic
links9 that is responsible for ecological dynamics among diverse
assemblages of species4,11±13. Early mechanism-based theory
asserted that food webs have little omnivory and several proper-
ties that are independent of species richness1±4,6. This theory was
overturned by empirical studies that found food webs to be much
more complex5,7±9,14±18, but these studies did not provide mechan-
istic explanations for the complexity9. Here we show that a
remarkably simple model ®lls this scienti®c void by successfully
predicting key structural properties of the most complex and
comprehensive food webs in the primary literature. These proper-
ties include the fractions of species at top, intermediate and basal
trophic levels, the means and variabilities of generality, vulner-
ability and food-chain length, and the degrees of cannibalism,
omnivory, looping and trophic similarity. Using only two empiri-
cal parameters, species number and connectance, our `niche
model' extends the existing `cascade model'3,19 and improves its
®t ten-fold by constraining species to consume a contiguous
sequence of prey in a one-dimensional trophic niche20.

We compare the abilities of two earlier models, the random and
cascade models3,19, and our new niche model to predict a dozen
properties for each of seven food webs. The parameters of all models
are set to synthesize webs with the empirically observed species
number and connectance level. We compare model predictions with
the largest and highest-quality empirical food webs that include
autotrophs and were originally documented to study food web
structure comprehensively (Table 1). Three are from freshwater
habitats: Skipwith Pond, Little Rock Lake and Bridge Brook Lake;

two are from habitats at freshwater-marine interfaces: Chesapeake
Bay and Ythan Estuary; and two are from terrestrial habitats:
Coachella Valley and the island of St Martin.

Throughout this work, `species' refers to trophic species, which
are functional groups of taxa that share the same predators and prey
in a food web3. `Trophic species' is a widely accepted3,4,8,14,17,18 and
sometimes criticized convention5,14 within structural food-web
studies that reduces methodological biases in the data3,4,8. A
matrix with S rows and columns represents a food web with S
species. Element aij is 1 if species j consumes species i and 0 if not.
There are S2 possible and L actual links. Directed connectance17 (C)
equals L/S2.

In the random model3,19, any link among S species occurs with the
same probability (P) equal to C of the empirical web. This creates
webs as free as possible from biological structuring while maintain-
ing the observed S and C. The cascade model3,19 assigns each species
a random value drawn uniformly from the interval [0,1] and each
species has probability P = 2CS/(S - 1) of consuming only species
with values less than its own. This pecking order helps to explain
species richness among trophic levels3 but underestimates inter-
speci®c trophic similarity19 and overestimates food-chain length
and number in larger webs3,18. The niche model (Fig. 1) similarly
assigns each species a randomly drawn `niche value'. The species are
then constrained to consume all prey species within one range of
values whose randomly chosen centre is less than the consumer's
niche value. The single range adds a previously discussed20 com-
munity-level contiguity of niche space to the cascade model by
causing species with similar niche values to share consumers
frequently within the community. The placement of the niche
partially relaxes the cascade hierarchy by allowing up to half a
consumer's range to include species with niche values higher than
the consumer's value. All three models incorporate substantial
stochastic variability along with dependence on S and C.

Twelve properties of each empirical and model web are measured
(see Methods):
(i±iii) Species types1±8,14±18,21: the fractions of top (T, species with no
predators), intermediate (I, species with both predators and prey)
and basal (B, species with no prey) species.
(iv, v) The standard deviations (s.d.) of generality14 (GenSD) and
vulnerability14 (VulSD) quantify the respective variabilities of spe-
cies' normalized prey (Gi) and predator (Vi) counts:

Gi �
1

L=S ^
S

j�1

aji V i �
1

L=S ^
S

j�1

aij

Normalizing with L/S makes s.d. comparable across different webs
by forcing mean Gi and Vi to equal 1.

Table 1 Basic properties of empirical food webs

Name Taxa S L/S C(L/S2)

Skipwith Pond 35 25 7.9 0.32
Little Rock Lake 181 92 10.8 0.12
Bridge Brook Lake 75 25 4.3 0.17
Chesapeake Bay 33 31 2.2 0.072
Ythan Estuary 92 78 4.8 0.061
Coachella Valley 30 29 9.0 0.31
St Martin Island 44 42 4.9 0.12
.............................................................................................................................................................................

`Taxa' refers to the original names for groups of organisms found in the primary reference. S refers to
trophic species3. The seven food webs address (1) primarily invertebrates in Skipwith Pond15; (2)
pelagic and benthic species in Little Rock Lake17, the largest food web in the primary literature; (3)
Bridge Brook Lake, the largest among a recent set of 50 Adirondak lake pelagic food webs6,7; (4) the
pelagic portion of Chesapeake Bay emphasizing larger ®shes30; (5) mostly birds and ®shes among
invertebrates and primary producers in the Ythan Estuary16; (6) a wide range of highly aggregated
taxa in the Coachella desert5; and (7) trophic interactions emphasizing Anolis lizards on the
Caribbean island of St Martin18.

10
niri

i

ci

Figure 1 Diagram of the niche model. Each of S species (for example, S = 6, each shown

as an inverted triangle) is assigned a `niche value' parameter (ni ) drawn uniformly from

the interval [0,1]. Species i consumes all species falling in a range (ri ) that is placed by

uniformly drawing the centre of the range (ci ) from [ri/2, ni ]. This permits looping and

cannibalism by allowing up to half of ri to include values > ni. The size of ri is assigned by

using a beta function to randomly draw values from [0,1] whose expected value is 2C and

then multiplying that value by ni [expected E(ni) = 0.5] to obtain the desired C. A beta

distribution with a = 1 has the form f(x|1, b) = b(1-x)b-1, 0 , x , 1, 0 otherwise, and

E(X) = 1/(1+b). In this case, x = 1-(1-y)1/b is a random variable from the beta distribution

if y is a uniform random variable and b is chosen to obtain the desired expected value. We

chose this form because of its simplicity and ease of calculation. The fundamental

generality of species i is measured by ri. The number of species falling within ri measures

realized generality. Occasionally, model-generated webs contain completely discon-

nected species or trophically identical species. Such species are eliminated and replaced

until the web is free of such species. The species with the smallest ni has rI = 0 so that

every web has at least one basal species.
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